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Corner vowels in males and females ages 4 to 20 years:
Fundamental and F1-F4 formant frequencies
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The purpose of this study was to determine the developmental trajectory of the four corner vowels’
fundamental frequency (f,) and the first four formant frequencies (F1-F4), and to assess when
speaker-sex differences emerge. Five words per vowel, two of which were produced twice, were
analyzed for f, and estimates of the first four formants frequencies from 190 (97 female, 93 male)
typically developing speakers ages 4-20years old. Findings revealed developmental trajectories
with decreasing values of f, and formant frequencies. Sex differences in f, emerged at age 7. The
decrease of f, was larger in males than females with a marked drop during puberty. Sex differences
in formant frequencies appeared at the earliest age under study and varied with vowel and formant.
Generally, the higher formants (F3-F4) were sensitive to sex differences. Inter- and intra-speaker
variability declined with age but had somewhat different patterns, likely reflective of maturing
motor control that interacts with the changing anatomy. This study reports a source of develop-
mental normative data on f, and the first four formants in both sexes. The different developmental
patterns in the first four formants and vowel-formant interactions in sex differences likely point to

anatomic factors, although speech-learning phenomena cannot be discounted.
© 2019 Acoustical Society of America. https://doi.org/10.1121/1.5131271
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I. INTRODUCTION

The acoustic properties of speech vary with the age and
sex of speakers, and these age-sex differences need to be con-
sidered for purposes such as determining anatomic-
articulatory-acoustic relationships through the lifespan, design-
ing automatic speech recognition for diverse speaker groups,
setting parameter values for synthesized speech of children
and adults, and interpreting clinical data from individuals with
speech disorders such as cerebral palsy, Down syndrome, and
hearing impairment. In their classic study on vowels, Peterson
and Barney (1952) convincingly showed the considerable
dispersion in the formant frequencies of men, women, and
children, presumably reflecting differences in vocal tract anat-
omy related to sex and age. Developmental trajectories were
more clearly defined in subsequent studies that reported data
on fundamental frequency (f,) and vowel formant frequencies
in children of both sexes and of various ages (see reviews by
Vorperian and Kent, 2007, and Kent and Vorperian, 2018).
The developmental data that are most extensive in covering
the childhood years are those of Eguchi and Hirsh (1969),
Perry et al. (2001), Assmann et al. (2008), and Lee et al.
(1999), with data being most abundant for the first two for-
mants, F1 and F2, less so for F3 (third formant), and least of
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all for F4 (fourth formant). Although F1 and F2 often suffice
to establish the phonetic identity of vowels, the higher for-
mants F3 and F4 enrich the speech production acoustic signal
and have been correlated to important features of the vocal
tract anatomy. F3 is associated with the most anterior region of
the front cavity (Fant and Pauli, 1974), and F4 is associated
with laryngeal descent/elevation (Sundberg and Nordstrom,
1976), as well as the pharyngeal and hypopharyngeal cavities
(Lin et al., 1989; Takemoto et al., 2006). Data on the first four
formants may help to determine anatomic-acoustic relation-
ships for typical and atypical vowel development in both
sexes. In addition, F3 and F4 have been shown to be important
for specifying the acoustics of liquid sounds, both rhotics
(Hagiwara, 1995) and laterals (Ladefoged and Maddieson,
1996); normalizing both rhotic and non-rhotic vowels (Disner,
1980; Hillenbrand and Gayvert, 1993); explaining the speak-
er’s formant (a closeness of F3 and F4; Bele, 2006; Leino
et al., 2011) and the singer’s formant (a clustering of F3— F5;
Sundberg, 1974); determining the acoustic correlates of differ-
ences in maxillary arch dimensions (Hamdan ef al., 2018); and
studying the consequences of clinical procedures such as ton-
sillectomy (Svancara et al., 2006), orthodontic treatment
(Kulak Kayikcei et al., 2012), and supracricoid laryngectomy
(Buzaneli et al., 2018).

Comparing the formant data from published studies is
complicated by differences in methodology, especially dif-
ferences in speech samples, speaker dialect, and formant
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estimation procedures, and these factors may explain differ-
ences in results for the characteristics of the vowel quadrilat-
eral (Kent and Vorperian, 2018). A common limitation
of the developmental studies published to date is that they
typically report data for only one word per vowel (e.g., /u/ in
the word boot) and often do not control for influences such
as children’s familiarity with the test words, phonological
neighborhood density of a given word, and coarticulatory
effects. Consideration of all these factors in continuing
research may lead to more valid data comparisons and more
reliable estimates of derived indices, such as vowel space
area (VSA) or other measures of vowel dispersion (Kent and
Vorperian, 2018).

The primary goal of the present study is to report formant
frequency data for the corner vowels of the classic quadrilat-
eral that can be used to construct developmental trajectories
for the first four formants in male and female speakers over
the age range of 4-20 years old. This goal is based on the need
to establish the maximal acoustic and articulatory working
space of vowel production in typically developing individuals,
as defined by the corner vowels of the vowel quadrilateral,
and to use such normative data to better address the under-
standing and study of anatomic-acoustic relations. Classic
research indicates that vowels are mastered by the age of 4
(Donegan, 2013; however, Yang and Fox, 2013, present evi-
dence of continuing maturation until at least 8 years of age)
and anatomic maturation is generally assumed by the age of
20. Data obtained with the same methodology used in the pre-
sent research were previously reported for adults aged 20-92
(Eichhorn et al., 2018), so that the current work and its prede-
cessor constitute a lifespan investigation of corner vowel
acoustics in American English. In the procedure used here,
each vowel is represented by five different monosyllabic
words selected according to criteria suited to developmental
research, including word familiarity and phonological neigh-
borhood density (Munson and Solomon, 2004). Another goal
of the present study is to assess the variability in formant fre-
quencies as a function of speaker age. Studies have shown that
variability in acoustic and physiologic measures of speech
production declines with maturation (Kent, 1976; Lee et al.,
1999; Smith and Goffman, 1998; Walsh and Smith, 2002), but
it is not clear if intra- and inter-speaker variabilities decrease
monotonically or have a more complicated developmental pat-
tern related to periods of accelerated growth of the vocal tract
with re-adaptation of speech motor-control to the changing
anatomy (Vorperian, 2000).

The following three research questions motivated this
research:

(1) What is the trajectory of developmental change for f,
and all four formants across the corner vowels? Based
on previous studies, we expected to observe a general
decline of f, with age and a conspicuous fall in male
speakers at the onset of puberty. For the formants, we
expected to observe a progressive decrease in the for-
mant frequencies of all vowels, but also expected that
developmental effects across different individuals would
not be uniform across age, vowel-type, formants, or
speaker-sex. Decreasing formant frequencies with age
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within each sex are presumed to reflect growth of the
vocal tract, but we hypothesize that the detailed pattern
of age-related changes varies with vowel and formant
because of nonuniform growth in different regions of the
vocal tract.

(2) At what age will speaker-sex differences be evident in f,
and formant frequencies? Based on previous studies, we
expected that differences in f, would emerge at around
12 years of age, but that speaker-sex differences in for-
mant frequencies would be evident by about 4 years of
age, the youngest age under study, and these differences
would accelerate at the age of puberty.

(3) What is the pattern of inter- (between) and intra- (within)
speaker variability across development for the corner
vowels in f, and formant frequencies? Earlier studies
generally show reduced variability with age, presumably
reflecting maturation of speech motor control. We
expected greater inter-speaker and intra-speaker variabil-
ity in the age periods of 4-6 years and during puberty,
periods that are influenced by factors such as speech
motor learning and rapid anatomic changes.

Il. METHODS
A. Participants, acoustic stimuli, and data collection

Speech recordings were made from 190 (97 female and
93 male) typically developing participants ages 4-20 years
old. Participants were judged to have the regional dialect
that is representative of the general geographic region from
which they were recruited. The age of 4 was the youngest
age recruited for this study because the larger research proto-
col of which this acoustic study was a component required
participation in tasks that are not easily performed by chil-
dren younger than 4. The speech stimuli, also used in Wild
et al. (2018) and Eichhorn et al. (2018), consisted of the fol-
lowing five different monosyllabic American English words
for each of the four corner vowels: /i/ (bead,, bee, eat,
sheep, and feet), /u/ (boo, boot,, zoo, hoot,, and shoe), [&/
(bath, bat,, cat, hat,, and sad), and /a/ (dot, hop, pot,, top,
and hot,). Two of the five words, marked with subscript “2,”
were presented twice to assess intra-speaker variability.
Since the stimuli were selected with the intent of studying
speech production in both typically developing and atypi-
cally developing children (e.g., children with Down syn-
drome, as in the study by Wild et al., 2018), the words were
produced in isolation (i.e., a carrier phrase was not used to
limit demands on the production task), and the selection of
the words was based on the following factors: (1) Words
should be familiar to younger participants and have high
phonological neighborhood density, which reportedly maxi-
mizes F1-F2 vowel space (Munson and Solomon, 2004).
Frequency of occurrence of words also can affect vowel pro-
duction (Munson and Solomon, 2004), but this feature was
not controlled given the difficulty of finding words that meet
multiple criteria. (2) Preference was given to words with
bilabial and alveolar consonants over words with sounds,
such as velars, which can be difficult for children with motor
speech disorders.
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Recording was done in a quiet room using a Shure-
SM48 microphone (Shure Inc., Niles, IL) mounted on a floor
stand and adjusted to each participant’s seated height at a
15 cm distance and 45 degree angle laterally from the mouth.
The microphone was connected to a Marantz-PMD 660 digi-
tal audio recorder (Marantz Professional in Music Brands,
Inc., Cumberland, RI) that digitizes at a rate of 48 kHz with
16-bit resolution on a SanDisk Ultra II flashcard (SanDisk
Western Digital Corporation, San Jose, CA). To optimize
recording level, the Marantz recorder gain was adjusted to
6—12 dB below the maximum level. The stimuli were presented
visually (picture and orthographic word) and aurally (recordings
from an adult male—with a f; of 110 Hz, from the Midwest, i.e.,
same regional dialect as where the participants were recruited
from—were played through external speakers) using a laptop
with the TOCS+ platform program (Hodge et al., 2009) for ran-
domization. Participants were instructed to repeat the speech
stimuli (28 words total) at a normal loudness level, with 2 prac-
tice words at the beginning. This study used a combination of
methods for stimulus presentation that were originally designed
to increase the likelihood of participation by young children with
potential limitations in attention span, as well as potential limita-
tions in cognitive, sensory, and motor functions. These proce-
dures were used successfully in a study of speech intelligibility
in children and adults with Down syndrome (Wild ez al., 2018).
Applying the same procedures with all participants, children and
adults, permits the comparability of data across speakers with
and without developmental delay or disorder.

B. Acoustic analysis and measurements

Procedures of acoustic analysis were based on results of
previous studies that (1) evaluated the accuracy of vowel for-
mant measurements in four acoustic analysis systems (Burris
et al., 2014), (2) determined the effect of analysis parameter
manipulations on formant measurements in children and adults
(Derdemezis et al., 2015), and (3) reviewed methods and data
sources for vowel formant frequencies across the lifespan
(Kent and Vorperian, 2018). The acoustic analysis procedures
used here were the same as those used by Eichhorn et al.
(2018) in a study of vowels produced by adults of different
ages and are as follows: Speech recordings were uploaded to a
computer, and the waveforms of each word were segmented
using Praat (version 5.1.31, Boersma and Weenink, 2010), and
saved as a separate sound file. Next, the vowel portion of each
word was analyzed using an upgraded version of TF32 (time-
frequency analysis software for 32-bit Windows; Milenkovic,
2010) to measure the frequency for f, and F1— F4 values. TF32
was chosen for analysis because it does not degrade the signal
through downsampling, has a linear predictive coding (LPC)
formant-track overlaid on a gray-scale spectrogram for visual
inspection of formant patterns (along with a pitch track), and a
time-slice spectrum linked to the spectrogram that displays fast
Fourier transform (FFT) and LPC spectral slice information. In
addition, TF32 allows the user to select a range of LPC coeffi-
cients and the optimal dynamic range.

The measurement objective was to determine the
extreme formant frequencies in each vowel production to
allow comparisons with the classic studies on vowel

J. Acoust. Soc. Am. 146 (5), November 2019

formants (e.g., Lee et al., 1999; Peterson and Barney, 1952).
These extreme values serve to define the acoustic boundaries
of vowel production over the lifespan and help establish the
formant-frequency extrema as used in various indices of
VSA or vowel dispersion (Kent and Vorperian 2018). The
measurements were not intended to address vowel inherent
spectral changes (Morrison and Assmann, 2013) although
such features are certainly of interest in fully characterizing
vowel production. Analysis entailed selecting a vowel-
specific measurement point/inflection point to estimate
formant frequencies because such an approach is suitable for
vowels such as /u/ and /&/ that are often produced with
substantial formant shifts (Kent and Vorperian, 2018).
Therefore, we first displayed the spectrogram and waveform
of the segmented word and used the following criteria for
selecting the vowel-specific temporal measurement point:
vowel /i/, point of highest frequency of F2; vowel /u/, point
of lowest frequency of F2; vowel /a/, point of least separa-
tion between F1 and F2 frequencies; and vowel /&/, point of
most evenly spaced formants, while avoiding measurement
at a point of decreasing F2-F1 difference (which reflects
backing of the vowel). Next, all four formant frequencies
F1-F4 measurements were estimated by inspecting (a) the
spectrogram (with overlaid LPC formant tracks) and spectral
slice (with zoom-in function for greater measurements accu-
racy, and cepstrum), and using (b) combined displays of the
FFT spectrum, LPC spectrum, and cepstrum. Parameter
manipulations to optimize the spectrogram for acoustic anal-
ysis included the following: (1) The analysis bandwidth of
FFT spectrograms was adjusted for each speaker group. The
bandwidth for adult male speakers was 300Hz, and
350-500Hz for women and children (i.e., speakers with a
high f,). In addition, a narrow band spectrogram with an
analysis bandwidth of 50 Hz was used as needed to view the
harmonic structure as an additional form of analysis to deter-
mine the formant pattern and guard against the possibility of
a strong harmonic dominating the LPC analysis. (2) The
dynamic range was adjusted to provide the preferred view of
the formant pattern by increasing or decreasing the amount
of energy present on the spectrogram. (3) The number of
coefficients on the time-slice LPC spectrum was adjusted as
needed (e.g., increased to differentiate merging formants or
identify formants with low energy or decreased to avoid con-
fusing strong harmonics or inter-formant energy with for-
mants). Formant measurements that could not be reliably
estimated or appeared to have extreme values (outliers),
especially for children and/or higher formants, were scruti-
nized and re-measured using a consensus analysis approach
where two or three examiners assessed the spectrogram and
time-slice spectrum displays and used knowledge of acous-
tics to decide upon analysis values. If the examiners could
not come to an agreement, no measurement was recorded for
one or more formants (i.e., uncertain measurements were
treated as missing data).

The measurements of f, were made to obtain baseline
data to inform formant-frequency estimation (because the
accuracy of formant measurement depends, in part, on f,, val-
ues), and portray general developmental patterns. The f,
measurements for each vowel production were recorded at
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the same temporal point as that used for the formants using
TF32’s pitch determination algorithm. When a value of f,
was questionable (e.g., affected by irregular phonation, such
as vocal fry, or when the pitch tracker failed), a narrowband
spectrogram with an analysis bandwidth of 50 Hz and the
time-slice spectrum FFT display (with 40 ms duration) were
compared, and the first harmonic was recorded for the f,
measurement. The value of the first harmonic was interpo-
lated from higher harmonics as appropriate. For example,
if the tenth harmonic was of suitably high amplitude, the
frequency of this harmonic was divided by ten to obtain
the value of the first harmonic. To resolve f, discrepancies,
the f, measurement was made at a different location than the
F1-F4 temporal point. However, when the f, measurement
could not be resolved using any of these methods, no mea-
surement was made.

To assess reliability of acoustic measurements for ages
4-20years old, a random subset of recordings from eight
typically developing (TD) speakers was measured by three
raters and intra-class correlation (ICC) calculated for each
vowel f,, and F1-F4 using analysis of variance (ANOVA)
variance components estimation in the statistical package
SPSS version 25 (SPSS Inc., Chicago, IL). Findings revealed
reliability to be excellent for all measurements with ICC
estimates >0.927 with the 95% confidence interval lower
boundaries >0.884, except for the f, of vowel /u/ and the F4
of vowels /@/ and /u/, where reliability was good with ICC
estimates >0.877 with 95% confidence interval lower
boundaries >0.806.

C. Statistical analysis

Prior to evaluating the research questions, the data were
screened for outliers. For each speaker, the mean frequency
measures (f,, F1-F4) for a given vowel were evaluated
against the distribution of measurements/observations across
speakers of the same age and sex for the same vowel type

and frequency measure. An outlier is defined as a measure-
ment that is greater than two standard deviations from the
mean frequency measure of the five words from the same
vowel for each speaker. Because no outliers were detected,
inter-speaker variability was based on mean frequency
measures for all vowels from all speakers except for three
who had missing F4 mean frequency measurements.’ The
frequency measures used to assess intra-speaker variability
similarly included all speakers, except for cases with missing
F3 and F4 measurements. Cases were missing if at least
one of the measurements from the repetitions was missing.
Table I lists the vowel- and frequency-specific numbers of
female and male speakers in each analysis for each of the
four age-cohorts (defined below). As seen in Table I, the
inter-variability analysis had 1.58% of F4 measurements
missing, and the intra-variability analysis had 1.44% and
4.21% of F3 and F4 measurements missing, respectively.
Despite the number of missing cases for the higher formants
F3 and F4, the remaining number of cases per age-cohort
made the estimation of both inter- and intra-speaker variabil-
ities possible.

As the individual forms of analysis conducted in this
paper cut across the three research questions, we use a simi-
lar organization in the presentation of the statistical analysis
and Sec. III (Results) that follow. The first set of analyses
addressing research questions (1), (2), and the inter-
variability portion of research question (3), used only one
production for each of the repeated words from each speaker.
These analyses focused on simultaneously assessing changes
in both the inter-speaker means and inter-speaker variability
of formant measurements in relation to speaker age and sex.
In these analyses a total of 20 words were used for each
speaker, where the mean of f, and each formant (F1-F4)
were computed across the five words of the same vowel
type, and submitted for analysis.” To better understand inter-
speaker variability, we considered a second set of analyses
that examine inter-speaker variability in relation to pubertal-

TABLE I. Vowel-specific sample size of female (F) and male (M) speakers in pubertal-stage age-cohorts (years;months) as described in Sec. II (Methods)
[pre-pubertal (4;0-7;11), peri-pubertal (8;0—10;2), pubertal (10;3—14;5), and post-pubertal (14;6-20;0)] used in variability analyses for inter-speaker variance

and intra-speaker mean frequency difference (f,, F1-F4).

Inter-variability Frequency Pre-pubertal (F/M) Peri-pubertal (F/M) Pubertal (F/M) Post-pubertal (F/M)
[il o/ [/ [a/ fo 22/21 12/13 30/29 33/30
[il o/ [/ [a/ F1-F2-F3 22/21 12/13 30/29 33/30
/il lu/ Ja/ F4 22/21 12/13 30/29 33/30
fae/ F4 21/21 12/13 30/29 32/29
Intra-variability Frequency Pre-pubertal (F/M) Peri-pubertal (F/M) pubertal (F/M) Post-pubertal (F/M)
fil o/ [a/ [/ fo 22/21 12/13 30/29 33/30
[il o/ 1af e/ F1-F2 22/21 12/13 30/29 33/30
i/ F3 21/20 12/13 30/29 33/30
F4 20/18 11/13 30/29 33/30
fu/ F3 20/16 12/13 30/29 33/30
F4 20/16 11/13 30/29 32/30
&/ F3 21/21 12/13 30/29 33/30
F4 19/17 12/13 29/29 31/29
la/ F3 22/20 12/13 30/29 33/30
F4 21/20 11/13 29/28 32/30
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stage age-cohorts corresponding to the age intervals
described in Fitch and Giedd (1999). The distribution of the
190 participants/speakers is summarized in Table I with the
sample size of the speaker- and sex-specific measurements
in each of the following four age-cohorts: pre-pubertal
[4;0-7;11 (years;months)], peri-pubertal (8;0—10;2), pubertal
(10;3-14;5), and post-pubertal (14;6-20;0). Finally, a third
set of analyses addressing the third research question on
intra-speaker variability used only the two repeated words
per vowel to measure production consistency within a
speaker and its changes across the four age-cohorts. Like the
prior set of analyses, these considered differences in the
intra-speaker variability seen across the four age-cohorts.

The first set of analyses, noted above, examined devel-
opmental changes in the sex-specific frequency (f,, F1-F4)
means and inter-speaker variability for each of the four
vowel types. This analysis entailed performing a separate
analysis for each frequency measurement and vowel type
using variance function regression (VFR; Western and
Bloome, 2009). As demonstrated below, VFR enables the
simultaneous analysis of mean and variance in relation to
studied predictors. Because development underlying the fre-
quency measurements will occur not only at varying rates
but also at varying ages across speakers, we have every
expectation that the measures will not only show overall
mean change, but also changes in inter-speaker variance in
relation to age. Such effects also contribute to heteroscedas-
ticity of residuals, a feature that violates the homoscedastic-
ity assumptions of traditional regression models.
Importantly, VFR provides a way of not only accounting for
heteroscedasticity but simultaneously studying both the
mean and variance of development in relation to age. Both
aspects of development were considered relevant in under-
standing change in frequency measurements. VFR has found
prior use in a variety of applications, including age-related
changes in self-reported health (Zheng et al., 2011), income
inequality (Cheng, 2014), cross-national differences in edu-
cational achievement (Montt, 2011), among others. In the
current analyses, the variables age and sex were studied as
predictors of both mean and variance. For each frequency
measurement, the combined VFR model can be written as
the

k

mean structure :  y; = fy + fracmale + Z pBage’
=1
pm X
+ ﬁjmale xage + ¢
=1
=xp+e, (1)
variance structure :
k

IOg (612) = Jo + Amaiemale + Z ilagel
=1
P '
+ Z Jmale x agel +e¢; =Zid+e;, (2
J=1
where y; is the mean frequency measurement across words

of the same vowel type for speaker i, log (o,-z) is the natural
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log of the residual (between-participant) variance of y;, and
age' and male * age/ represent the polynomial terms of chro-
nological age and its interaction with speaker-sex, respec-
tively. As described below, the highest order of such terms
to be included is determined empirically.

The estimates of model parameters were obtained using
the traditionally applied iterative procedure in which the
unknown parameters of each equation were updated condi-
tionally upon provisional parameters of the other equation.’
Initially, a fifth-degree polynomial regression with speaker-
sex and age interaction was used to model both mean (m)
and variance (v), followed by likelihood ratio (LR) tests to
determine the highest order terms (k = age, and p= age
x male), i.e., ky, pm, ky, and p,, for the best fitting model.
The outcomes of the LR tests can, as a result, lead to different
models for the mean and variance equations, as well as differ-
ences across the formant/vowel types under consideration.
The same VFR procedure was applied for each frequency
measurement, producing a total of 20 VFRs.

The VFR seeks to model the mean and variance trajec-
tories in relation to age (as displayed in Figs. 1 and 2). Given
an initial model that includes all polynomial terms up to the
highest order (in this case five) an iterative process was fol-
lowed that successively removed higher order terms found
not to be statistically significant through application of a LR
test. When the iterative process reached a point at which
removing the remaining term of highest order was statisti-
cally significant, that term, along with all lower order terms
(whether significant or not), were retained for the final
model. The resulting coefficients for the best fitting models
are illustrated in Tables II and III. In each table, the presence
of estimates for some effects but not others makes apparent
the best fitting model determined by VFR. For example, for
the f, frequency /a/ vowel analysis, k,, = 3, p,, = 3 yielded
the best fitting model for the mean structure, implying poly-
nomial terms up to age’ needed to be included to account for
the effect of age, and male x age® to account for the interac-
tion between sex and age (see Table II). For the same f,
and /a/ vowel, the variance structure equation identified
k, =3, p, =1, implying polynomial terms up to age’
needed to be included to account for the effect of age, but
terms only up to male x age' to account for the interaction
between sex and age (see corresponding entry in Table III).
While all presented coefficient estimates are relevant to
describing the exact nature of the age and sex-by-age inter-
action effects, for our purposes we simply note that an age
effect of some form exists if any term of age is retained in
the best-fitted model. Similarly, a speaker-sex effect of some
form exists if speaker-sex (male) or any term of speaker-sex
(male) and age interaction is retained.

To better evaluate sex differences at specific ages based
on the VFR, we also applied tests of the main effect of sex
where the age variable was centered at each of the different
age values.* These analyses are statistically equivalent (each
implies the same mean and variance trajectories by age and
sex) but provide an analytical mechanism by which to test
sex and variance differences at each possible age level (as
displayed in Figs. 3 and 4).
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FIG. 1. (Color online) (a)—(d) Display of the vowel mean data of each speaker for f, and F1-F4: /i/ (a), /u/ (b), /&/ (c), and /a/ (d). Female speakers are shown
in the left panel, and male speakers are shown in the right panel. For each frequency, the variance function regression (VFR) with fifth degree polynomial fits
is displayed using thick dashed and thick solid line lines for females and males, respectively, with =1 standard deviation for each denoted by thin dashed and
dotted lines for female and male speakers, respectively. Vertical lines reflect the four pubertal-stage cohorts (years;months) as described in Sec. II (Methods):
pre-pubertal (4;0-7;11); peri-pubertal (8;0—10;2); pubertal (10;3—14;5); and post-pubertal (14;6-20;0).

As the statistically significant polynomial terms in many
of the VFR analyses imply nonlinear and/or interaction
effects, we also rely heavily on graphical inspection of the
results based on the models applied when interpreting the
findings (of the kind in Figs. 1 and 2). As the coefficients in
each of the models work together in defining trajectories,
such graphical inspection becomes a more meaningful way
of understanding the combined influence of the statistically
significant predictors, as opposed to trying to interpret each
coefficient separately.

To further assess inter-speaker variability of the fre-
quency measures (f,, F1I-F4) for each of the four vowel
types, we followed up the VFR modeling of variance struc-
ture with a second set of analyses, applying F-tests to exam-
ine variance differences in relation to the different pubertal-
stage age-cohorts that are anticipated to correspond to
known developmental changes. Our ability to make statisti-
cal claims regarding inter-speaker variability differences
across the age-cohorts depends on the number of speakers
within the relevant cohorts. Thus, unlike the VFR analysis,
the F-tests for variance differences are sensitive only to the
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measurements collected within the relevant intervals. For
each frequency and vowel combination, comparisons of all
pairs of the four age-cohorts were conducted for male and
female speakers. See the supplementary material for the
estimated inter-speaker variance (Hz?) for each frequency
type by speaker-sex by age-cohort (with the corresponding
results in terms of statistical significance patterns displayed
in Fig. 5).° The goal of these analyses was to determine
whether age-related effects are present in the variance of
each frequency (f,, F1-F4) in males and females across
development. Given the multiple comparisons, a Bonferroni
correction was applied with an o-level of 0.0083 to control
for the inflated type I error rate in assessing significant age-
cohort comparisons.

A third set of analyses addressed the second part of
research question (3) by using the mean absolute discrep-
ancy values across the repeated words to study developmen-
tal change in intra-speaker variability across the four
age-cohorts for the males and females. These analyses were
again performed by vowel and frequency, implying each
participant provided one data point (a mean of two absolute
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discrepancy values—one for each repeated word) per analy-
sis. Preliminary inspection of the data showed severely
right-skewed distributions of the measurements; therefore, a
nonparametric Wilcoxon test was applied. The Wilcoxon
test compared differences across age-cohorts, as well as sex
differences across age-cohorts, using the same Bonferroni
correction as above. See the supplementary material for the
intra-speaker median absolute discrepancy scores for each
frequency type by speaker-sex by age-cohort (with corre-
sponding results in terms of statistical significance patterns
displayed in Fig. 6).

lll. RESULTS

Figures 1(a)-1(d) show the trajectories of the VFR fit
for both mean structure and variance structure of f, and
F1-F4 for each vowel and each sex. In addition, the means
for the female and male trajectories (with band of *1 stan-
dard deviation) are shown in the left panels of Figs.
2(a)-2(d), while the corresponding model-predicted log var-
iances are in the right panels. These graphs give an overview
of sex- and age-related changes in f, and the four formants
estimates for each corner vowel. The overall pattern suggests
a systematic decrease in all frequencies (f,, F1-F4) for all
vowels, particularly in male speakers. The aberrant trends at
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the extreme ages, where minor increases or decreases in fre-
quencies are noted (particularly after age 17), can be ignored
as they reflect a boundary limitation of the polynomial fit
that is typically due to the limited number of measurements
at the extremes (De Boor, 1978). The details of the VFR
results are shown in Tables II and III. The tables make
apparent not only the presence of statistical significance in
relation to age, sex, and age X sex, but also the complexity
of the relationships due to the need for higher-order polyno-
mial terms. Therefore, Figs. 1 and 2 help guide the interpre-
tations of the findings. Figures 3 and 4 display the age-
specific graphic and numeric values for the means and var-
iances, respectively, using the age-centered VFR models.
For inter-speaker variance, the overall pattern suggests a
decrease in variance as age increases with the exception of f,
where variance increases until puberty and then decreases
[Figs. 2(a)-2(d), right panel, and Fig. 4].

A. Developmental trajectories: Fundamental
frequency
1. Fundamental Frequency—Means

Findings confirm the expected general decrease in f, as
age increases for all corner vowels, with the male f, decreas-
ing at a faster pace than the female f,, and with sex

Vorperian et al.
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differences increasing with age (Figs. 1-3). Significant sex-
ual dimorphism first emerges at around age 7, where females
have lower f,. However, those differences decrease then re-
emerge after the age of 10 with males having significantly
lower f, (see Fig. 3 with numeric values).

2. Fundamental frequency—Inter-speaker variability

The vowel /u/ stands out for its static f,, variance value
in both males and females across development, with males
having significantly greater inter-speaker variance than
females throughout [Figs. 2(b) and 4]. However, the remain-
ing vowels demonstrate a gradual increase in inter-speaker
variance with vowel- and sex-specific peaks, typically during
puberty, followed by a general trend of post-pubertal
decrease in variance. Overall, male speakers had greater f,
inter-speaker variance than female speakers before age 14
except for /u/ where, as noted above, variance was signifi-
cant at all ages examined [Figs. 2(a)-2(d), right panel, and
Fig. 4]. Figure 5 displays the significant age-cohort compari-
sons with findings revealing a clear pattern of significant
decrease in f, inter-speaker variance from the pubertal to
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post-pubertal age-cohorts for all vowels in male speakers
only.

3. Fundamental frequency—iIntra-speaker variability

Similar to inter-speaker f, variability, intra-speaker f,
variability decreased as age increased. However, while inter-
speaker f,, variance decreased significantly from pubertal to
post-pubertal age-cohorts for all vowels in males, intra-
speaker f, differences decreased significantly from the pre-
pubertal to post-pubertal age-cohorts for all vowels in
males and the vowels /i/ and /u/ in females (see Fig. 5 versus
Fig. 6).

As for sex differences, contrary to the above reported f,,
inter-speaker variability where males generally have signifi-
cantly greater variance than females prior to age 14 (during
and before puberty, Fig. 4), significant sex differences in f,
intra-speaker variability were present primarily during post-
puberty for all vowels, with males having smaller f, differ-
ences/discrepancies than females (for /i/, W=694.50,
p=0.0061, median difference: F=28.5, M=15.25; for /u/,
W=703.50, p=0.0042, median difference: F=10.50,
M =6.50; for /&/, W =699.50, p = 0.005, median difference:
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F=10.5, M=6.5; for /a/, W=707.00, p =0.0036, median
difference: F =10.5, M =4.75).

B. Developmental trajectories: Formants
1. Formant frequencies—Means

There is a general trend for F1-F4 frequencies of all
vowels to decrease with age particularly in males with an
overall trend for males to have lower F1-F4 frequencies
than females. The higher formants F3 and F4 have a greater
developmental change in linear frequency values than the
main vowel formants F1 and F2. In particular, F4 shows dis-
tinct mean frequency differences between male versus
female speakers, beginning at age 4, as depicted in Figs.
2(a)-2(d). Noteworthy of mention is that despite the drastic
developmental changes in the higher formants, such changes
are not necessarily associated with greater values of formant
scaling factors between children and adults. For example,
the formant scaling factor (ratio between frequencies) for
4-year-old boys and male adults is 1.42 for the F1 frequency
of vowel /i/ and 1.57 for the F4 frequency of the same vowel.
In addition, males tend to have lower F1-F4 frequencies.
The trend for male speakers to have a larger decrease in for-
mant frequencies as age increases naturally results in
increased sex differences with age. Findings reveal vowel-
and formant-specific significant sex differences emerging at
a young age, especially for F2 and F4 (e.g., age 4 in F2 for
the vowels /i/ and /u/, and F4 for the vowel /&/; see p-values
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displayed in Fig. 3). Interestingly, the vowel- and formant-
specific sexual dimorphism appears to emerge at different
ages. Sexual dimorphism in F1 emerges at age 6 for the
vowels /u/ and /a/, age 8 for /&/, and age 9 for /i/. Sex dif-
ferences in F2 are present at age 4 for the high vowels /i/
and /u/, but for the low vowel only emerge at age 6 for /a/
and age 7 for /&/. Similarly, sex differences for F3 emerge
at age 5 for the vowel /i/, 6 for /a/, 7 for /u/, and 8 for /&/.
As for F4, sex differences for F4 are present at age 4 for the
low front vowel /&/ and persist throughout development,
but emerge at ages 6 and 7 for the back vowels /a/ and /i/,
respectively. As for the high back vowel /u/ sex differences
emerge at age 5 but dissolve after age 8, and then re-
emerge at age 13.

2. Formant frequencies—Inter-speaker variability

The model predicted variance of the formant frequen-
cies is displayed in Figs. 2(a)-2(d) (right panel) and VFR-
based age-centered variance in Fig. 4. With the exceptions
of the static variance of F2-F4 for the vowel /i/, and F4 for
the vowel /u/, as well as the substantial increase of F2 vari-
ance for the vowel /u/ among female speakers, the general
trend was for variance to decrease with age in both female
and male speakers. F-tests were carried out to assess the
change in variance across the four age-cohorts for all vowels
and formants, except when the model predicted variance
remained stable in males and female speakers as a function
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TABLE II. The estimated mean structure coefficients [Eq. (1)] of the best-fitting VFR models by frequency and vowel type. Asterisks denote significance lev-
els: *p <0.05, **p <0.01, ***p <0.001. (Those terms determined by the VFR analysis not to be statistically beneficial are shown as “— and can be inter-
preted as fixed 0’s.) Note: The relationship between size of estimated coefficient and significance (p-value) is not direct across coefficients due to varying

standard errors.

Frequency i/ Ju/ [/ /a/
fo Intercept 20724 202,08 221,73 218.98*
Male —46.01% —46.31%%% —47.60%%% —43.73%
Age —171 4455 —105.2955 —131.70%** —136.36%*
Age x male —619.425%#% —630.01 7% —633.02%% —605.63%#
Age? 58.05% 76.93%% 58.78% 50.08*
Age? x male —174.60% —182. 18 —160.97##% — 189,327
Age’ 6.46 —33.02 9.49 — 18,39
Age® x male 174.66% 205,127 165175 181,454+
Age? — 53.80% — —
Age* x male — — — —
F1 Intercept 380.877% 411,147 1059.83%# 1320.62%
Male —45,09% — 47,89 68.52 27.17
Age —253,5] % —409.78%5 —0.89 — 171
Age x male —444 285 —190.04* — 12455 — 111
Age? — 69.39 — 338.08# "
Age2 x male — — — —
Age’ — 85.99 — —
Age® x male — — — —
F2 Intercept 304907 1241 475 281634 198838
Male —275.96% — 144,97 66.27 11.90
Age —3694.10% % —748.18% —4.07% —2. 405
Age x male —2163.87%% — — 1,72 —1.30%#
Age? 12134255 — 1098.61%# 441 23w
Age® x male —1081.57%%* — — —
Age’ 379.53% — — —
Age’ x male — — — —
F3 Intercept 3678.30% 3079.38% 3226.94% 3788 .42
Male —268.56%#% —239. 28 —213.56%#* —46.32
Age —4472,05% —4524. 51 %% —3994, 67 — 4,66+
Age x male —1116.79* —1522.85% —1859.56% —1.21%
Age? 1152.61 %% 1294853 1487.94% 55 963.00%
Age? x male — — —434.35 —
Age’ — 469.80% 447 84 465.61%
Age® x male — — — —
F4 Intercept 4585.90% 427266 4425195 4208.37%
Male —342.67% —311.47%%% —329.60%#% —250.027#
Age —5021.77%% —4694.27% —4060.39% —3418.26%
Age x male —3021.72%% —2208.02% —1833.86% — 1554775
Age? 1857.97#% 1658.36%# 1868 .44 1307.327%%
Age? x male —1474.97%* —1385.87* —1324.55% —824.84
Age’ 229.09 134.37 — —
Age® x male — 766.22 — —
Age? 544.95% —86.61 — —
Age* x male — 1141.45% — —
Age® — —744.96%% — —

of age—see Fig. 4 (i.e., no F-test was carried for F2—F4 for
vowel /i/, F4 for vowel /u/). As displayed in Fig. 5, findings
revealed significant formant- and vowel-specific changes
across age-cohorts, with a general trend of pre-pubertal to
post-pubertal significant decrease in variance for both male
and female speakers for F1-F3 but not F4. More significant
decrease in inter-speaker variability occurred between the
male age-cohorts than the female age-cohorts, particularly,
for F1 (all vowels except /u/), and F1-F3 in the vowels /a/
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and /&/, implying that male variance decreases more rapidly
than female variance.

Sex differences in F2 inter-speaker variance was present
only for the vowel /u/ where variability increased in females
from pre- to post-puberty, with males having significantly
greater variance than female speakers at ages 4 and 5 and
significantly smaller variance at age 19 (Fig. 4). Similarly,
sex differences in F3 and F4 variance were only present for
the vowel /@&/ with F3 variance increasing during the
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TABLE III. The estimated variance structure coefficients [Eq. (2)] of the best-
fitting VFR models by frequency and vowel type. Asterisks denote significance
levels: *p < 0.05, **p < 0.01, ***p < 0.001. (Those terms determined by the
VER analysis not to be statistically beneficial are shown as “— and can be
interpreted as fixed 0’s.) Note: Female is the reference group. The combination
of the parameters without interaction (without x Male) forms the trajectory of
female. On the other hand, any model including an interaction term indicates
that the male and female trajectories are statistically different according to the
LR test. The relationship between size of estimated coefficient and significance
(p-value) is not direct across coefficients due to varying standard errors.

Frequency fi/ Ju/ =/ fa/
fo Intercept 5.94%#%  5.98%%* 5.82%#* 6.017%%*
Male 0.60%* 0.80%** 1.99%* 1.82%*
Age —1.08 — 3.48 1.76
Age x male —4.05 — —0.01* —0.01
Age? —121 — —6.18%%%  _378%
Age® x male  —6.38% — — —
Age’ —8.59 — — —3.58%
Age’ x male  6.68% — — —
Fl1 Intercept 7.28%*E ] B4k 8.93%#* 9.99%#*
Male —0.10 —0.43* 0.02 —
Age —4.68%  —5.58%k  —10.28%**  —(.0]%**
Age x male  —6.36* — 0.61 —
Age? —0.41 — 2.93%* —
Age? x male  —6.83*% — ~7.57 —
Age® —4. 30k — 4.56% —
Age® x male — — —5.73 —
F2 Intercept 10.39%#% 985k 10.92%%*  ]0.95%%**
Male — 0.00 — —
Age — 4.62% —0.01%*  —0.01%**
Age x male — —8.27* — —
Age2 — — — —
Age® x male — — — —
Age3 — — — —
Age® x male — — — —
F3 Intercept 10.927%*%  10.43%**  10.20%**  ]1.62%**
Male — — —0.30 —
Age — —5.46%%* —3.88 —0.01%**
Age x male — — —5.98 —
Age? — — 3.06 —
Age? x male — — —8.48%%* —
Age® — — — —
Age3 X male — — — —
F4 Intercept 11.06%%%  11.17%%%  11.64%%*  ]].43%%*
Male — — —0.31 —
Age — — 0.00 —0.01%*
Age x male — — 0.00 —
Age? — — 3.15% —
Age? x male — — — —
Age3 — — — —

Age3 X male — — — —

peri-pubertal ages in males, and males having significantly
larger F3 variance than females after age 17; also, F4 vari-
ance was significantly smaller in males than female at all
ages studied.

3. Formant frequencies—Intra-speaker variability

The overall trend for formant frequency (F1-F4) intra-
speaker variability (Fig. 5) to decrease as age increases is
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similar to that of inter-speaker variability (Fig. 6) where both
intra- and inter-speaker variability reach their respective
smallest values during post-puberty. Comparison of Figs. 5
and 6 shows striking differences in F4, where there is a gen-
eral absence of inter-speaker variability in F4 but not for
intra-speaker variability.

IV. DISCUSSION

This section addresses the three research questions that
this study examined. (1) What is the trajectory of develop-
mental change for f, and all four formants across the corner
vowels? (2) At what age will speaker-sex differences be evi-
dent in f,, and formant frequencies? (3) What is the pattern of
inter- (between) and intra- (within) speaker variability across
development for the corner vowels in f, and formant
frequencies?

A. The trajectory of developmental change for f, and
all four formants

As stated in the Introduction, we expected a progressive
decrease in f, and the formant frequencies of all vowels but
also some non-uniform changes across age, vowel-type, for-
mants, and speaker-sex. The following discussion is keyed
to Figs. 1(a)-1(d) and 3.

The trajectories for f, exhibit the expected overall
decrease with age, but with much greater effects for males
than females, as discussed in detail in Sec. IV B on sex dif-
ferences. The mean values of f, appear to decrease for both
sexes beginning at about 7 years of age, reaching adult val-
ues at about 14 for girls and 16 for boys. Studies of both
gross and microscopic anatomy show that laryngeal develop-
ment in children is a protracted process that extends to late
adolescence. Features of gross anatomy have been revealed
by cadaver dissections (Kahane, 1978; Litman et al., 2003;
Wysocki et al., 2008) and imaging methods (Rogers et al.,
2014; Wani et al., 2016). The general conclusions are that
(a) the laryngeal structures grow in size throughout child-
hood but maintain their relative proportions, (b) the larynx
descends in the neck (resulting in lengthening of the vocal
tract) with a primary descent by about 4 years of age and sec-
ondary descent during adolescence particularly in males, and
(c) the vocal folds lengthen continuously in both sexes but
relatively more in boys. Microscopic and histological studies
reveal that the lamina propria develops over an extended
period, reaching adult-like characteristics at 12 (Boseley and
Hartnick, 2006; Hartnick et al., 2005) or even later (Ishii
et al., 2000; Sato, 2018). These macro- and micro-anatomic
changes likely account for age-related decreases in mean f,
and variability of f,.

For the most part, the formant frequency trajectories
for all four formants follow a continuously decreasing
pattern that is roughly monotonic for some formants and
vowels (e.g., all formants of vowel /a/) but not monotonic
for others (e.g., F4 of vowel /u/). In their review article,
Vorperian and Kent (2007) identified evidence of abrupt
changes in formant frequencies at certain ages, specifi-
cally, an overall jump in vowel acoustic space in adoles-
cent boys and a limited jump in the low vowel region of
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FIG. 3. (Color online) Graphic and numeric display of VFR-based mean frequency (Hz) measurements of ages 4-20 for female and male speakers, and corre-
sponding differences and statistical significance p-values by frequency and corner vowels.

the vowel acoustic space. Abrupt drops in formant fre- diachronic differences are involved. The discrepant results
quency are not readily apparent in Figs. 1(a)-1(d), where for this vowel are most likely the consequence of either
the overall pattern is one of smooth decrease. This is likely dialectal variations or differences in word selection and
due to the consistent methodology employed across all measurement procedures. Regarding the last mentioned
ages in this study that addresses the various methodologi- possibility, the words boot and who’d may have been pro-
cal issues noted in the Introduction (Kent and Vorperian, duced with /u/ fronting, which induces an increase in F2
2018). The data in the present study differ from previously frequency. Fronting of vowel /u/ (also called goose front-
reported data in some respects. One difference is in the ing because goose is a frequently used keyword for this
data for vowel /u/, especially for F1 and F2. In the present vowel) has been noted in nearly all varieties of North
study, these formants changed very little with age in either American English (Labov et al., 2006). In addition, the
sex. The mean frequency of F2 for this vowel decreased procedure followed in the present study was to measure the
less than 300 Hz over the age range of 4-20 years old for formant frequencies of vowel /u/ at the point in time when
both males and females. In addition, the mean F1 and F2 F2 reached its lowest frequency.

frequencies for vowel /u/ in the present study are substan- The present data, when combined with those of
tially lower than those in the studies of Lee ef al. (1999; Eichhorn et al. (2018), show the pattern of sex-specific
who used the word boot) and Hillenbrand ez al. (1995; who changes in f, and the first four formant frequencies over the
used the word who’d). In both the present study and the age range of 4-92 years old. The data for female speakers
study by Eichhorn et al. (2018), the F1 and F2 values for reach adult values by about 16 years of age, whereas the data
vowel /u/ in adults agree with those of Peterson and for male speakers reach adult values at about 20. Eichhorn
Barney (1952) but not so well with those of Lee et al. et al. reported that formant frequencies are essentially stable
(1999) and Hillenbrand et al. (1995). Given the correspon- throughout adulthood but f, decreases significantly with age
dence of the present results with those of Peterson and  in women. These results can be interpreted to mean that
Barney (1952), it does not seem that generational or vocal tract length reaches its adult size in adolescence for
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FIG. 4. (Color online) Graphic and numeric display of VFR-based age-centered variance (Hz?) of ages 4-20 for female and male speakers with corresponding

differences and statistical significance p-values by frequency and corner vowel.

females or early adulthood for males and changes little, if at
all, throughout adulthood in healthy individuals.

B. Sex differences in f, and formant frequencies

Given previously reported data (Lee et al., 1999;
Maturo et al., 2012; Sorenson, 1989), we expected sex dif-
ferences in f, to emerge at about 12 years of age. However,
the mean data in the present study show significant f,, sex dif-
ferences emerging at age 7 with a steady gradual decrease of
fo in males beginning at about age 7, while females show lit-
tle if any change around this age period. Similarly, Nicollas
et al. (2008) reported that boys have a lower f, than girls,
even before mutation. The maturational change in f, in
females is accomplished primarily between the ages of 7 and
14, whereas in males it is accomplished primarily between
the ages of 7 and 16, over which period there is a drop of
approximately one octave. These results differ from those in
a large pediatric database reported by Maturo et al. (2012)
who concluded that boys reach the adult mean f, at about 16
with a transition period beginning at about 12 years of age.
They also concluded that girls reach the adult mean f, at
around age 14, with a transition period beginning around
age 11.

J. Acoust. Soc. Am. 146 (5), November 2019

Sex differences in formant frequencies appeared at the
earliest ages under study but varied with vowel and formant.
Typically, once differences emerged, they persisted through
age 20. For F1 frequency, sex differences emerged between
the ages of 6 and 9 with differences for the back vowels /u/
and /a/ emerging earlier than the front vowels /&/ and /i/.
For F2 frequency, a sex difference was present at age 4 for
the high vowels /i/ and /u/, with differences evident for the
low vowels /a/ and /®/ at ages 6 and 7, respectively. For F3
frequency, a significant sex difference emerged at age 5 for
the high-front vowel /i/ and present for all vowels by age 8.
For F4 frequency, sex differences appeared for all vowels at
the age interval of 4-8 years with differences present for the
low-front vowel /&/ at age 4, followed by the vowels /a/ and
/i/ at ages 6 and 7, respectively. Previous studies have
reported sex differences in vowel formants for children as
young as 3 or 4 years of age (Perry et al., 2001; Whiteside,
2001; Yang and Mu, 1989), and the present data confirm and
extend these results. It can be concluded that sex differences
in one or more of the formant frequencies of the corner vow-
els are evident by at least the age of 4.

The origin and significance of these sex differences are
uncertain. Speech is sexually dimorphic, strikingly so in
male:female ratios compared with other physical differences
(Rendall et al., 2005). Sexual dimorphism in the acoustic
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FIG. 5. (Color online) Inter-speaker variability. Significant changes in variance of f,, F1-F4 across the four age-cohorts for each of the corner vowels are dis-
played for male and female speakers with filled and open horizontal triangular bars, respectively. The base of the triangular bar represents the maximal vari-
ance at the pubertal-stage age-cohort. The pointed apex of the triangular bar reflects the direction of change in variance. Grayed-out plots indicate that the F-
test was not carried out since the model predicted variance remained stable as a function of age (see Fig. 4).

signal of speech arises for two primary reasons: (1) anatomic
and physiologic differences between males and females, and
(2) articulatory and phonatory adjustments that speakers
make to sound more like one sex than the other. Regarding
the first point, Fitch and Giedd (1999) concluded that sexual
dimorphism in the vocal tract is not evident until puberty.
However, Vorperian et al. (2011) concluded that pre-
pubertal sex differences exist first in the oral region, then the
pharyngeal region of the vocal tract once growth rate differ-
ences between males and females are accounted for. A possi-
ble limitation to the available anatomic data is that measures
of only the length of the vocal tract (Fant, 1960), or portions
of the vocal tract, do not account for the acoustic differences
between males and females. That is, it is necessary to obtain
data on the regional volumes of the vocal tract during devel-
opment in both sexes. Only recently have data been reported
on sex differences in the hypopharynx in adults (Zhang
et al., 2019); however, it is not known when sexual dimor-
phism emerges and whether it is present in children.
Regarding the second point, it has been reported that acous-
tic differences between the sexes result from learning
gender-specific speech patterns (Cartei et al., 2014; Cartei
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et al., 2012; Cartei and Reby, 2013; Johnson, 2006; Pisanski
et al., 2016). It is not possible to reach a definitive conclu-
sion from the present data as to the relative roles of the ana-
tomic and speech-learning interpretations. More refined
anatomic data are required particularly of the oral and pha-
ryngeal regions. For example, Kelly et al. (2017) document
the presence of pubertal and pre-pubertal sexual dimorphism
of the inferior portion of the mandible with males having
greater dimensions in the antero-posterior and medial-lateral
planes (e.g., gonion width, gonion angle, and gnathion
angle), but if and how such differences in mandibular mea-
surement alter the oral-pharyngeal region is needed. It is
likely that the different developmental patterns in the first
four formants may hold clues as to anatomic differences in
the growing vocal tracts of boys and girls. We tentatively
conclude that the vowel-formant interactions in sex differ-
ences point to anatomic factors that may interact with
speech-learning phenomena.

Another question relating to sexual dimorphism is:
when do males and females achieve the adult values of for-
mant frequencies? Comparing the data for males and females
[Figs. 1(a)-1(d)], it appears that formant frequencies for
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FIG. 6. (Color online) Intra-speaker variability. Significant differences in f;,, F1-F4 across the four age-cohorts for each of the corner vowels in males (shaded
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females asymptote on adult values at around age 14, whereas
formant frequencies for males do not asymptote on adult val-
ues until about age 20, the upper limit of age in this study.
Lee et al. (1999) observed that formant frequencies for
males and females diverge beginning at age 11 and progress
until about age 15. They concluded that the growth spurt of
the vocal tract in males occurs between ages 10 and 15. This
conclusion is consistent with findings from imaging studies
of the vocal tract confirming a rapid growth rate in vocal
tract length in males up to age 15 (Vorperian et al., 2009);
however, findings from imaging studies also indicate that
vocal tract lengthening continues beyond the age of 15 in
males but not as much in females (Fitch and Giedd, 1999;
Vorperian et al., 2009). If the present results are compared
with those in Eichhorn et al. (2018; a companion study using
the same methods), it appears that formant frequencies in
males asymptote at adult values at ages 19-20, which invites
the inference that vocal tract length reaches its maximum at
this period. Formant frequencies in later years of adulthood
exhibit variable patterns across studies, but based on findings
by Eichhorn et al. (2018) who used a larger number of par-
ticipants than most other studies and applied consistent
methodology across the young, middle, and older adult age-
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cohorts, it does not appear that additional lengthening of the
vocal tract necessarily occurs.

C. Inter- and intra-speaker variability across develop-
ment for the corner vowels in f, and formant
frequencies

Adults are capable of reliable vowel production for both
sustained vowels (Vogel et al., 2011), citation form vowels
(Heald and Nusbaum, 2015), and even after perturbation of
articulation by a bite block (Lindblom et al., 1977,
Lindblom and Sundberg, 1971). For citation speech, Heald
and Nusbaum reported some within-day variation in f, and
F1 but no significant changes in f, and F1-F3 between days.
The authors concluded that adults have a high level of inter-
nal precision and consistency. The developmental question
is: At what age is precise and reliable vowel production
achieved? An answer to this question is important for pur-
poses such as automatic speech recognition (where error
rates are higher for children than adults) and clinical assess-
ment of speech disorders (where atypical variability may be
a sign of a disorder such as childhood apraxia of speech). At
least three major factors should be considered in the
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interpretation of acoustic data pertaining to the precision of
vowel production.

(1) Age-related measurement error is particularly relevant to
formant frequencies, given that the error of measurement
is related to vocal fundamental frequency (Lindblom,
1962; Chen et al., 2019). It is also likely that the error of
formant estimation varies across formants, with the
higher formants F3 and F4 being more susceptible to
error given their larger bandwidths and lower energy.
The risk is that measurement error is not easily distin-
guished from variability arising from developmental or
other processes.

(2) Variability in acoustic and physiologic measures is com-
monly taken as an index of maturity of speech motor
control, and used as evidence that maturity is not reached
until late adolescence (Cheng et al., 2007; Walsh and
Smith, 2002) and perhaps even as late as 30 years of age
(Schotz et al., 2013). This conclusion applies to vowels
as well as overall speech production. Yang and Fox
(2013) concluded that children’s vowel production is
marked by substantial developmental change besides the
effect of vocal tract lengthening. They noted that the
“acoustical development of vowels from children to
adult norms is a long-term process” (Yang and Fox,
2013, p. 1266).

(3) Within the protracted development noted in factor (2)
above, maturity apparently is reached at different times
for different aspects (e.g., spatial versus temporal) of
speech production (Lee et al., 1999; Nittrouer, 1995;
Smith and Goffman, 1998; Stathopoulos, 1995).
Therefore, maturation of speech motor control is a multi-
layered process of overlapping biological (anatomic and
physiologic) and linguistic developments, rather than a
monolithic process. Furthermore, speech motor control
is not necessarily a continuous, monotonic process.
Smith and Zelaznik (2004) concluded that late childhood
(7- 12 years of age) is a plateau in the development of
coordinative synergies for speech production. It is likely
that motor control adapts to ongoing changes in anat-
omy, physiology, and phonology, each of which has a
developmental pattern.

In the data from the present study, the overall trend is
that both inter- and intra-speaker variability decreased with
age of speaker. Although age-dependent measurement error
[as discussed above in factor (1)] cannot be entirely excluded
as at least a partly explanatory factor; it is likely that the pat-
terns of change in variability reflect anatomic growth and
motor control (and their interaction). Specifically, increased
inter-speaker variability is probably associated with periods
of rapid growth during which individual differences are large
(e.g., somewhat different ages of onset of puberty, and dif-
ferent rates of growth between speakers), whereas increased
intra-speaker variability is likely more reflective of maturing
motor control.

Developmental differences in inter- versus intra- vari-
ability of the first four formants may have implications for
determining anatomic versus motoric contributions to
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variability. For example, inter-speaker variability for the low
vowels /a/ and /e/ were significantly greater than the high
vowels /i/ and /u/, as also reported by Yang and Fox (2013).
Factors that might explain the better precision of high over
low vowels are that the high vowels are associated with (a)
somatosensory feedback of tongue contact with the palate,
teeth, or both (Gick et al., 2017; Mitsuya et al., 2015), (b)
lateral bracing against the upper structures of the oral cavity,
which stabilizes articulation (Gick et al., 2017), and (c) satu-
ration effects in the relationship between articulation and
acoustic result (Perkell ef al., 1997). A longitudinal study
design that includes acoustic and physiologic measures of
inter- and intra- variability will likely help gain a clearer
understanding of the key contributors to inter- versus intra-
variability.

D. Comparison with data from previous research

As pointed out in Kent and Vorperian (2018), published
data on the corner vowels are not in complete agreement,
and the differences affect both the position and the shape of
the vowel quadrilateral in the traditional F1-F2 plane. The
differences could arise from several factors, including dia-
lectal differences among studies, methodological differences
in formant-frequency estimation, and selection of words for
the vowels of interest. A notable difference, as reported in
Sec. IV A, include differences between the present data and
those of Lee et al. (1999) in the F2 frequency of vowel /u/.
The present data for F1 frequency of the high vowels /i/ and
/u/ are lower than those in Hillenbrand et al. (1995) for both
male and female adults. These differences complicate efforts
to establish normative data on metrics such as VSA or mea-
sures of formant-frequency dispersion. For example, VSA is
arguably one of the most frequently reported acoustic mea-
sures of disordered speech, but there does not appear to be a
common source of normative data for the clinical interpreta-
tion of VSA values. Most studies using this metric to evalu-
ate clinical populations report their own normative data for
comparison. The same comment applies to alternative mea-
sures, such as measures of vowel formant dispersion.
Accounting for factors, such as the use of consistent data
collection and analysis methodology across development—
as done in this study using methodology consistent with that
of Eichhorn et al. (2018) in the adult population—may con-
tribute to a reliable normative database across the lifespan.
Similar studies across different regions and ages less than 4
can further help establish normative data.

The present study shows a relatively early emergence of
sex differences in f, and formant frequencies (particularly
the higher formants). These differences likely reflect ana-
tomic growth and remodeling, but sociocultural factors can-
not be discounted. The acoustic properties of vowels become
sex distinctive well before puberty.
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"Three speakers (two females and one male, ages 4, 18, and 18, respec-
tively) had missing F4 mean frequency measurements for the vowel /@/
because either all five data points or four out of the five data points for F4
were missing.

2Among repeated words, the first recording was selected unless it had one
or more missing frequency (f, or F1-F4) measurements, in which case the
second recording was used, provided it had fewer missing measurements.
*Initially, the mean structure parameters in Eq. (1) were estimated using
ordinary least squares to yield provisional estimates of ﬁ, and for each
observation its corresponding residual, ¢. The ¢> were, in turn, used to
define a provisional estimate of 7. This estimate of o7 was then modeled
as an outcome in Eq. (2) using a gamma regression model with log link to
determine provisional coefficient estimates 7. Then, the inverse of the pre-
dicted 62 from the gamma regression were used as weights to re-estimate
the parameters in Eq. (1), and the process was repeated until convergence
to yield the final estimates.

“Specifically, by centering age at each of the possible age values, we
altered the age at which the speaker-sex (male) term evaluates a sex differ-
ence for both the mean and variance. By testing the significance of the
male term, we therefore tested the existence of speaker-sex difference at
the specific age of the centering, and thus evaluated the statistical signifi-
cance of sex difference at every possible age location for the mean fre-
quency measure and the inter-speaker variance [values, respectively,
displayed in Figs. 3 and 4 in Sec. III (Results)].

See supplementary material at https://doi.org/10.1121/1.5131271 for a
summary of the results on inter-speaker variance (Hz?) estimates by
speaker-sex for each age-cohort; and a summary of the results of the intra-
speaker median absolute discrepancy scores by speaker-sex for each age-
cohort.
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