Recently added:

Sofroniew MV. (2018). Stem-Cell-Derived Astrocytes Divulge Secrets of Mutant GFAP. Cell Stem Cell. 23, 630-631. [editorial discussing the two new iPS cell papers, Li et al. and Jones et al.]

2018

2017

Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. Clinical Case Reports. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

prepared by Albee Messing

2016

Alfke H, Schimrigk S. (2016). Tumor-mimicking brainstem lesion in an adult with Alexander disease. Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren. 188, 869-870 [no genetic diagnosis given, although it says there was one]

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yalçinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. Noropsikiyatri Arsivi-Archives of Neuropsychiatry. 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

prepared by Albee Messing

2015

prepared by Albee Messing

2014

2013

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. Journal of Neuroscience. 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. Journal of Biological Chemistry. 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. Orphanet Journal of Rare Diseases. 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

prepared by Albee Messing

2012

prepared by Albee Messing

Hagemann TL, Jobe EM, Messing A. (2012) Genetic ablation of Nrf2/antioxidant response pathway in Alexander disease mice reduces hippocampal gliosis but does not impact survival. PLoS ONE 7, e37304 [link to full article]

A novel adult case of juvenile-onset Alexander disease: complete remission of neurological symptoms for over 12 years, despite insidiously progressive cervicomedullary atrophy. Neurological Sciences 33, 1389-1392

Cerebellar ataxia as the first manifestation of Alexander's disease. Arquivos de Neuro-Psiquiatria 70, 309-310

Alexander's disease: reassessment of a neonatal form. Childs Nervous System 28, 2029-2031

Late-onset Alexander disease with a V87L mutation in glial fibrillary acidic protein (GFAP) and calcifying lesions in the sub-cortex and cortex. Journal of Neurology 259, 457-461

Clinical aspects and pathology of Alexander disease, and morphological and functional alteration of astrocytes induced by GFAP mutation. Neuropathology 32, 440-446

GFAP mutations, age of onset, and clinical sub-types in Alexander disease. Neurology 77, 1287-94. [proposes new classification system, with updated survival statistics]

Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Experimental Cell Research 317, 2252-66

prepared by Albee Messing

2010

Messing A, Daniels CM, Hagemann TL. (2010). Strategies for treatment in Alexander disease. Neurotherapeutics 7, 507-515 [review] [link to full article]

2009

Hagemann TL, Boelens W, Wawrousek E, Messing A. (2009). **Suppression of GFAP toxicity by αB-crystallin in mouse models of Alexander disease.** *Human Molecular Genetics* 18, 1190-1199 [link to full article]

Yoshida T, Sasayama H, and Nakagawa M. (2009). **The process of inducing GFAP aggregates in astrocytoma-derived cells is different between R239C and R416W mutant GFAP. A time-lapse recording study.** *Neuroscience Letters* 458, 11-14

prepared by Albee Messing

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. *Journal of Clinical Investigation* 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

2007

prepared by Albee Messing
GFAP mutations and polymorphisms in 13 unrelated Italian patients affected by Alexander disease. Clinical Genetics 72, 427-433

2006

prepared by Albee Messing

2005

prepared by Albee Messing

2004

prepared by Albee Messing

2003

prepared by Albee Messing
[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

2002

prepared by Albee Messing

2001

2000

1999

prepared by Albee Messing

1998

1997

1996

prepared by Albee Messing

1995

1994

1993

prepared by Albee Messing

1992

1991

prepared by Albee Messing

[Included two Alexander disease patients]

1990

Wardinsky TD, Weinberger E, Pagon RA, Clarren SK, Thuline HC. (1990). **Partial deletion of the long arm of chromosome 11 [del(11)(q23.3----qter)] with abnormal white matter** [see comments]. *American Journal of Medical Genetics* 35, 60-63

prepared by Albee Messing
1989

1988

1987

prepared by Albee Messing
1986

1985

1984

1983

31

prepared by Albee Messing

1982

1981

1980

prepared by Albee Messing
1979

1977

1976

1974

1973

1972

1970

1968

1967

1966

1964
1962

1959

1953

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord. *Ciencia (Méx.)* 12, 71-74

1949

[First description of a child with Alexander disease]

1898