Alexander Disease Research Bibliography
(updated January 13, 2019)

Recently added:

Sofroniew MV. (2018). Stem-Cell-Derived Astrocytes Divulge Secrets of Mutant GFAP. Cell Stem Cell. 23, 630-631. [editorial discussing the two new iPS cell papers, Li et al. and Jones et al.]

2018

prepared by Albee Messing

2017

Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. Clinical Case Reports. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

prepared by Albee Messing

2016

Alfke H, Schimrigk S. (2016). *Tumor-mimicking brainstem lesion in an adult with Alexander disease.* Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren. 188, 869-870 [no genetic diagnosis given, although it says there was one]

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yalçinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. Noropsikiyatri Arsivi-Archives of Neuropsychiatry. 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

prepared by Albee Messing

2015

Ahmad O, Rowe DB. (2015). *Adult-onset Alexander’s disease mimicking degenerative disease*. *Practical Neurology* 15, 393-395 [one of the patients with onset at 79 years]

cognitive decline and behavioural disturbance in late-onset Alexander disease. J Neurol Sci. 357, 319-321

2014

2013

prepared by Albee Messing

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. *Journal of Neuroscience.* 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. *Journal of Biological Chemistry.* 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. *Orphanet Journal of Rare Diseases.* 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

Jany, P.L., Hagemann, T.L., and Messing, A. GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN Neuro 5:e00109.doi:10.1042/AN20130003 [link to full article and podcast]

2012

prepared by Albee Messing

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Experimental Cell Research 317, 2252-66

2010

prepared by Albee Messing

prepared by Albee Messing

2009

prepared by Albee Messing

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. *Journal of Clinical Investigation* 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

prepared by Albee Messing

2007

prepared by Albee Messing

prepared by Albee Messing
2006

[Provides additional clinical information on E207K patient initially reported in Van der Knaap, et al, 2005]

[age of onset for this patient would be considered "infantile" according to our classification]

prepared by Albee Messing

2005

prepared by Albee Messing
reveals a stress response followed by glial activation and neuronal dysfunction. *Human Molecular Genetics* 14, 2443-2458

2004

prepared by Albee Messing

2003

prepared by Albee Messing
Japanese patients with Alexander disease: a novel mutation, R79L. Brain & Development 25, 116-121

[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

2002

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

[see Sawaishi et al., 1999, for more clinical detail on this patient]

2001

prepared by Albee Messing

2000

1999

prepared by Albee Messing

1998

1997

prepared by Albee Messing
1996

1995

1994

1993

1992

1991

prepared by Albee Messing

1990

prepared by Albee Messing

1989

1988

1987
Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier. *Journal of the American Veterinary Medical Association* 190, 1004-1006

1986

1985

1984

1983

prepared by Albee Messing

1982

1981

1980

prepared by Albee Messing

1979

1977

1976

1974

prepared by Albee Messing

1973

1972

1970

1968

1967

1966

prepared by Albee Messing
1964

[Sixth case, first use of the name "Alexander's disease."]

1962

1959

1953

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord. Ciencia (Méx.) 12, 71-74

1949

[First description of a child with Alexander disease]

1898