Alexander Disease Research Bibliography
(updated April 29, 2019)

Recently added:

prepared by Albee Messing
Cell Reports 25, 947-958

Acta Neuropathologica Communications 6, 112
[putative pathogenic variant in the minor isoform, GFAP-delta]

Neurologia 33, 526-533 [review]

2018

Brain & Development 41, 195-200

Nature Methods 15, 693-+

European Journal of Neurology 25, e105-e106

Cell Stem Cell 23, 239-251

European Journal of Medical Genetics (in press)
Atypical Alexander disease with dystonia, retinopathy, and a brain mass mimicking astrocytoma.
Neurology: Genetics 4, e248 [*full text*]

Brain & Development 40, 587-591

Nam TS, Kang KW, Choi SY, Kim MK. (2018). **Teaching NeuroImages: Alexander disease with features of both frontal and bulbospinal involvement.**
Neurology 91, e396-e397

Journal of Voice (in press) (variant not specified, nor confirmed as pathogenic)

Annals of the Academy of Medicine, Singapore 47, 191-193 [*full text*]

Nature Communications 9, 1899 [*full text*]

Brain Pathology 28, 388-398 [review]

Brain & Development 40, 330-333

Annals of Neurology 83, 27-39 [*first real prospect for treatment*] [*full text*]

prepared by Albee Messing

2017

Clinical Case Reports. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

Neurology India 65, 887-889

Human Genome Variation 4, 17028 [full text]

Zhonghua Er Ke Za Zhi 55, 504-508

Frontiers in Neurology 8:255

Journal of Child Neurology 32:184-187

European Neurology 77:296-302

BMJ Case Reports doi: 10.1136/bcr-2016-218484 [genetic results not provided in text, but personal communication from author as N386S]

prepared by Albee Messing
Acta Neuropathologica Communications 5, 27

Journal of Biological Chemistry 292, 5814-5824

Annual Review of Pathology 12, 131-152

2016

Movement Disorders: Clinical Practice 3, 300-302

Scientific Reports 6, 35936

Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren 188, 869-870 [no genetic diagnosis given, although it says there was one]

BMC Neurology 16, 211

Noropsikiyatri Arsivi-Archives of Neuropsychiatry 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]
Acta Neuropathologica Communications 4, 69

Journal of Proteome Research 55, 2265-2282

Journal of Neurology 263, 821-822

Journal of Neuroscience 36, 1445-1455

Neurological Sciences 37, 973-977

Journal of Child Neurology 31, 869-72

Neurological Sciences 37, 143-145 [corresponds to S398F change in the protein sequence]

European Journal of Human Genetics 24, 852-856

2015

prepared by Albee Messing
Neurology: Clinical Practice 5:259-262

Ahmad O, Rowe DB. (2015). Adult-onset Alexander’s disease mimicking degenerative disease. Practical Neurology 15, 393-395 [one of the patients with onset at 79 years]

prepared by Albee Messing

2014

prepared by Albee Messing
Brain Research 1582, 211-219

Journal of Neuroscience 34, 6448-6558 (* joint first authors)

Neurology 82, 49-56

APMIS 122, 76-80

Parkinsonism & Related Disorders 20, 241-2

2013

Iranian Journal of Pediatrics 23, 481-484 [link to full article]

Journal of Neuroscience 33, 18698-18706

prepared by Albee Messing
[describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. Journal of Biological Chemistry 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. Orphanet Journal of Rare Diseases 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

prepared by Albee Messing
ASN Neuro 5:art:e00109.doi:10.1042/AN20130003 [link to full article and podcast]

Biancheri, R., Rossi, A., Ceccherini, I., Pezzella, M., Prato, G., Striano, P., and Minetti, C.
Magnetic Resonance Imaging "Tigroid Pattern" in Alexander Disease.
Neuropediatrics 44, 174-6

Alexander disease with mild dorsal brainstem atrophy and infantile spasms.
Brain & Development 35, 441-444

Alexander Disease.
Journal of Pediatrics 162, 648

Follow-up study of 22 Chinese children with Alexander disease and analysis of parental origin of de novo GFAP mutations.
Journal of Human Genetics 58, 183-188

Protein changes in immunodepleted cerebrospinal fluid from transgenic mouse models of Alexander disease detected using mass spectrometry.
Journal of Proteome Research 12, 719-728

Increased astrocytic ATP release results in enhanced excitability of the hippocampus.
Glia 61, 210-224 [studies involved mouse model expressing R239H mutant]

Infantile-onset Alexander disease: a genetically proven case with mild clinical course in a 6-year-old Indian boy.
Journal of Child Neurology 28, 396-398

Ceftriaxone for Alexander's Disease: A Four-Year Follow-Up.
Journal of Inherited Metabolic Disorders Reports 9, 67-71 [one patient, initial study reported in Sechi 2010]
2012

Hagemann TL, Jobe EM, Messing A. (2012) Genetic ablation of Nrf2/antioxidant response pathway in Alexander disease mice reduces hippocampal gliosis but does not impact survival. PLoS ONE 7, e37304 [link to full article]

prepared by Albee Messing
Multiple Sclerosis Journal 18, 546-546 [but may be mis-diagnosis, since D295N is a known polymorphism, and not proven as disease-causing]

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). *Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability*. Experimental Cell Research 317, 2252-66

2010

Messing A, Daniels CM, Hagemann TL. (2010). Strategies for treatment in Alexander disease. Neurotherapeutics 7, 507-515 [review] [link to full article]

2009

[mutation and other clinical findings reported by Hida et al. 2012]

prepared by Albee Messing

prepared by Albee Messing

[contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

prepared by Albee Messing

2007

2006

[Provides additional clinical information on E207K patient initially reported in Van der Knaap, et al, 2005]

[age of onset for this patient would be considered "infantile" according to our classification]

2005

prepared by Albee Messing

2004

Movement Disorders 19, 1244-1248

Journal of the Neurological Sciences 225, 125-127

Neurology 63, 1302-1304

Brain & Development 26, 206-208

Cellular & Molecular Life Sciences 61, 369-385

2003

Neuroscience Letters 350, 169-172

Neurology 61, 1014-1015

European Neurology 50, 100-105

Archives of Neurology 60, 1307-1312

[same patients for whom clinical/genetic data reported in Meins et al., 2002]

[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

2002

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

prepared by Albee Messing

[see Sawaishi et al., 1999, for more clinical detail on this patient]

2001

prepared by Albee Messing

2000

prepared by Albee Messing

1999

prepared by Albee Messing

1998

1997

1996

Pediatric Pathology & Laboratory Medicine 16, 327-343

Acta Neuropathologica 91, 200-204

Clinical Neuropathology 15, 13-16

1995

Biotechnic & Histochemistry 70, 285-29

Neurology 45, 2266-2271 [see Messing et al., 2011, for genetics]

1994

Clinical Neuropathology 13, 31-38

1993

American Journal of Pathology 143, 1743-1753

Revue Neurologique 149, 781-787

1992

preparation by Albee Messing

1991

[Included two Alexander disease patients]

prepared by Albee Messing
1990

Journal of Histochemistry and Cytochemistry 38, 103-109

Journal of Child Neurology 5, 253-258

Journal of Child Neurology 5, 259-260

Journal of Child Neurology 5, 248-252

Wardinsky TD, Weinberger E, Pagon RA, Clarren SK, Thuline HC. (1990). Partial deletion of the long arm of chromosome 11 [del(11)(q23.3----qter)] with abnormal white matter [see comments].
American Journal of Medical Genetics 35, 60-63

1989

Cell 57, 71-78

American Journal of Anatomy 185, 335-341

1988

American Journal of Pathology 130, 569-578

prepared by Albee Messing
Annals of Neurology 24, 302 [really no evidence]

Journal of Pathology 155, 9-15

Neurology 38, 152-154

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier.
Journal of the American Veterinary Medical Association 190, 1004-1006

Rinsho Shinkeigaku - Clinical Neurology 27, 1141-1144

1986

Acta Neuropathologica 71, 163-166

1985

Brain 108, 367-385

Acta Neuropathologica 67, 163-166

1984

1983

1982

1981

prepared by Albee Messing
Neuropediatrics 12, 382-391

Brain Research 210, 419-425

Developmental Medicine & Child Neurology 23, 660-661

1980

Acta Neurologica 2, 1-9

Italian Journal of Neurological Sciences 1, 131-138

Neuroradiology 20, 103-106

Rivista di Neurobiologia 26, 357-364

Acta Neuropathologica 50, 237-240

1979

Journal of Neurology, Neurosurgery & Psychiatry 42, 619-624

Acta Neuropathologica 45, 133-140
Acta Neuropathologica 47, 81-84

1977

Archives of Pathology & Laboratory Medicine 101, 655-657

1976

Journal of Neurology, Neurosurgery & Psychiatry 39, 803-809

Neurology 26, 607-614

1974

Neurology India 22, 57-64

Archives of Pathology & Laboratory Medicine 98, 379-385

1973

Neuropatologia Polska 11, 127-141

1972

Kepes JJ, Ziegler DK. (1972). *Alexander's disease in an adult (leukodystrophy with Rosenthal fibers).*

1968

1967

1966

1964

[Sixth case, first use of the name "Alexander's disease."]
Acta Neuropathologica 4, 212-217

1962

Acta Neuropathologica 2, 126-143

1959

Journal of Neuropathology and Experimental Neurology 18, 359-383

1953

Brain 76, 215-228

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord.
Ciencia (México) 1 2, 71-74

1949

Brain 72, 373-381
[First description of a child with Alexander disease]

1898

Bietr.Pathol.Anat. 23, 111-143 [first description of what later came to be known as “Rosenthal fibers”]