Alexander Disease Research Bibliography
(updated January 13, 2019)

Recently added:

[editorial discussing the two new iPSC cell papers, Li et al. and Jones et al.]

[putative pathogenic variant in the minor isoform, GFAP-delta]

prepared by Albee Messing

2017

Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. Clinical Case Reports. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

prepared by Albee Messing

prepared by Albee Messing
2016

Alfke H, Schimrigk S. (2016). *Tumor-mimicking brainstem lesion in an adult with Alexander disease*. *Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren* 188, 869-870 [no genetic diagnosis given, although it says there was one]

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yalçinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. *Noropsikiyatri Arsivi-Archives of Neuropsychiatry* 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

prepared by Albee Messing

2015

Ahmad O, Rowe DB. (2015). *Adult-onset Alexander’s disease mimicking degenerative disease.* *Practical Neurology* 15, 393-395 [one of the patients with onset at 79 years]

prepared by Albee Messing
Journal of the Neurological Sciences 357, 319-321

prepared by Albee Messing

2014

2013

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. *Journal of Neuroscience* 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. *Journal of Biological Chemistry* 288, 31329-37 (includes comparison of mutant keratin and GFAP)

prepared by Albee Messing

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. Orphanet Journal of Rare Diseases 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

Jany, P.L., Hagemann, T.L., and Messing, A. GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN Neuro 5:art:e00109.doi:10.1042/AN20130003 [link to full article and podcast]

prepared by Albee Messing

2012

Hagemann TL, Jobe EM, Messing A. (2012) Genetic ablation of Nrf2/antioxidant response pathway in Alexander disease mice reduces hippocampal gliosis but does not impact survival. _PLoS ONE_ 7, e37304 [link to full article]

Kessell, A.E., Finnie, J.W., Manavis, J., Cheetham, G.D., and Blumbergs, P.C. (2012). _A Rosenthal Fiber Encephalomyelopathy Resembling Alexander's Disease in 3 Sheep._ _Veterinary Pathology_ 49, 248-254 [no GFAP mutations were detected]

prepared by Albee Messing

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. *Experimental Cell Research* 317, 2252-66

prepared by Albee Messing
[link to full article]

[no genetic confirmation of diagnosis, however]

prepared by Albee Messing
2009

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. Journal of Clinical Investigation 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

prepared by Albee Messing

2007

2006

[age of onset for this patient would be considered "infantile" according to our classification]

prepared by Albee Messing

2005

No to Hattatsu [Brain & Development] 37, 55-59 [R239C patient]

2004

2003

prepared by Albee Messing
Pediatric Radiology 33, 47-49

[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

Lancet Neurology 2, 75

Annals of Neurology 53, 118-120

2002

Brain & Development 24, 723-726

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

Annals of Neurology 52, 779-785

Journal of Neurogenetics 16, 175-179

Neuropediatrics 33, 194-198

Neurology 58, 1541-1543

[see Sawaishi et al., 1999, for more clinical detail on this patient]

Journal of Child Neurology 17, 227-230

prepared by Albee Messing

2001

2000

1999

1998

prepared by Albee Messing
 Pediatric Neurology 18, 67-70

1997

 Neuroscience Letters 231, 79-82

 Neurology 48, 552

 Neurology 48, 552

 Bone Marrow Transplantation 20: 247-249

1996

 Pediatric Pathology & Laboratory Medicine 16, 327-343

 Acta Neuropathologica 91, 200-204

 Clinical Neuropathology 15, 13-16

1995

1994

1993

Developmental Medicine & Child Neurology 35, 732-736

1992

Pediatric Neurosurgery 18, 134-138
[see Messing et al., 2011, for genetics]

Neurology 42, 1733-1735

Journal of Child Neurology 7, 168-171

Iwaki A, Iwaki T, Goldman JE, Ogomori K, Tateishi J, Sakaki Y. (1992). Accumulation of alpha B-crystallin in brains of patients with Alexander's disease is not due to an abnormality of the 5'-flanking and coding sequence of the genomic DNA.
Neuroscience Letters 140, 89-92

Patologia Polska 43, 193-195

Acta Neuropathologica 84, 322-327

1991

Clinical Neuropathology 10, 122-126

Neuroradiology 33, 438-440

prepared by Albee Messing

[Included two Alexander disease patients]

1990

prepared by Albee Messing

1989

1988

prepared by Albee Messing

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier. Journal of the American Veterinary Medical Association 190, 1004-1006

1986

1985

1984

1983

1982

1981

prepared by Albee Messing
1980

Acta Neurologica 2, 1-9

Italian Journal of Neurological Sciences 1, 131-138

Neuroradiology 20, 103-106

Rivista di Neurobiologia 26, 357-364

Acta Neuropathologica 50, 237-240

1979

Journal of Neurology, Neurosurgery & Psychiatry 42, 619-624

Acta Neuropathologica 45, 133-140

Acta Neuropathologica 47, 81-84

1977

Archives of Pathology & Laboratory Medicine 101, 655-657
1976

1974

1973

1972

1970

prepared by Albee Messing
1968

Neurology 18, 543-549

Archives of Neurology 19, 494-502 [see Messing et al., 2012, for genetics]

1967

Shinkei Kenkyu No Shimpo 11, 765-774

1966

Shinkei Kenkyu No Shimpo - Advances in Neurological Sciences 10, 716-720

1964

Archives of Neurology 11, 414-422
[Sixth case, first use of the name "Alexander's disease."]

Acta Neuropathologica 4, 212-217

1962

Acta Neuropathologica 2, 126-143

1959

Journal of Neuropathology and Experimental Neurology 18, 359-383

prepared by Albee Messing
1953

Crome L. (1953). **Megalencephaly associated with hyaline pan-neuropathy.**
Brain 76, 215-228

1952

Stevenson LD, Vogel FS. (1952). **A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord.**
Ciencia (México) 12, 71-74

1949

Alexander WS. (1949). **Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant.**
Brain 72, 373-381
[First description of a child with Alexander disease]

1898

Bietr.Pathol.Anat. 23, 111-143 [first description of what later came to be known as “Rosenthal fibers”]