A Diagnostic Marker to Discriminate Childhood Apraxia of Speech From Speech Delay

Lawrence D. Shriberga

Edythe A. Strandb

aWaisman Center
University of Wisconsin-Madison

bDepartment of Neurology
Mayo Clinic-Rochester

Seventeenth Biennial Conference on Motor Speech:
Motor Speech Disorders & Speech Motor Control
Sarasota, FL, February 26 - March 2, 2014
Premises

- Both Childhood Apraxia of Speech (CAS) and Speech Delay (SD) are characterized by delays in auditory and somatosensory representational and feedback processes (Shriberg, Lohmeier et al. 2012).

- CAS is characterized by additional deficits in transcoding (planning/programming) and feedforward processes.

- A highly valued diagnostic marker of CAS requires conclusive psychometric support for one cross-linguistic, lifespan sign that identifies and quantifies the transcoding and feedforward deficits.
III. Clinical Typology
(Behavioral Phenotype)

Speech Delay (SD)
- Speech Delay-Genetic (SD-GEN)
- Speech Delay-Otitis Media With Effusion (SD-OME)
- Speech Delay-Developmental Psychosocial Involvement (SD-DPI)

Speech Errors (SE)
- Speech Errors -/s/ (SE-/s/)
- Speech Errors -/r/ (SE-/r/)

Motor Speech Disorder (MSD)
- Motor Speech Disorder-Apraxia Of Speech (MSD-AOS)
- Motor Speech Disorder-Dysarthria (MSD-DYS)
- Motor Speech Disorder-Not Otherwise Specified (MSD-NOS)

IV. Diagnostic Markers
(Criterial Signs of Phenotype)

Speech Disorders Classification System (SDCS)^a

I. Etiological Processes
(Distal Causes)

- Genomic and Environmental Risk and Protective Factors
- Neurodevelopmental Substrates

II. Speech Processes
(Proximal Causes)

- Representation
 - Auditory
 - Somatosensory
- Transcoding
 - Planning
 - Programming
- Execution
 - Feedforward
 - Feedback

III. Clinical Typology
(Behavioral Phenotype)

- Speech Delay (SD)
 - Speech Delay-Genetic (SD-GEN)
 - Speech Delay-Otitis Media With Effusion (SD-OME)
 - Speech Delay-Developmental Psychosocial Involvement (SD-DPI)
- Speech Errors (SE)
 - Speech Errors - /s/ (SE-/s/)
 - Speech Errors - /r/ (SE-/r/)
- Motor Speech Disorder (MSD)
 - Motor Speech Disorder-Apraxia Of Speech (MSD-AOS)
 - Motor Speech Disorder-Dysarthria (MSD-DYS)
 - Motor Speech Disorder-Not Otherwise Specified (MSD-NOS)

IV. Diagnostic Markers
(Criterial Signs of Phenotype)

Two Frameworks to Integrate Signs of SD and CAS With Their Genomic and Neurodevelopmental Substrates

- Dual Stream Neurodevelopmental Framework
 - Focus on ventral and dorsal substrates of speech processing in CAS
 (Hickok, Poeppel, & colleagues, others [see References])
Neurodevelopmental Substrates of CAS Cast Within a Dual Stream Framework

Ventral Stream
- Earlier Ontogeny
- Auditory Perception
- Phonemic
- Semantic, Syntactic
- Instantiated

Dorsal Stream
- Later Ontogeny
- Somatosensory Production
- Phonetic
- Articulatory Novel
Speech Disorders Classification System (SDCS)

I. Etiological Processes
(Distal Causes)

II. Speech Processes
(Proximal Causes)

III. Clinical Typology
(Behavioral Phenotype)

Speech Delay (SD)
- Speech Delay-Genetic (SD-GEN)
- Speech Delay-Otitis Media With Effusion (SD-OME)
- Speech Delay-Developmental Psychosocial Involvement (SD-DPI)

Speech Errors (SE)
- Speech Errors - /s/ (SE-/s/) (SE-/s/)
- Speech Errors - /r/ (SE-/r/) (SE-/r/)

Motor Speech Disorder (MSD)
- Motor Speech Disorder-Apraxia Of Speech (MSD-AOS)
- Motor Speech Disorder-Dysarthria (MSD-DYS)
- Motor Speech Disorder-Not Otherwise Specified (MSD-NOS)

IV. Diagnostic Markers
(Criterial Signs of Phenotype)

Two Frameworks to Integrate Signs of SD and CAS With Their Genomic and Neurodevelopmental Substrates

Dual Stream Neurodevelopmental Framework
- Focus on ventral and dorsal substrates of speech processing in CAS (Hickok, Poeppel, & colleagues, others [see References])

Generic Speech Processing Framework
- Seven-element, significantly underspecified framework (Friederici, Guenther, Hickok, Levelt, Maassen, Nijland, Poeppel, Preston, Terband, van de Merwe, Ziegler, others [see References])

II. Speech Processes (Proximal Causes)

<table>
<thead>
<tr>
<th>Framework</th>
<th>Preliminaries</th>
<th>Method</th>
<th>Findings</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Framework Method Findings Conclusions

Preliminaries

II. Speech Processes (Proximal Causes)

1. Representation
 - Auditory
 - Somatosensory

2. Transcoding
 - Planning
 - Programming

3. Execution

4. Feedforward

5. Feedback

Two Frameworks to Integrate Signs of SD and CAS With Their Genomic and Neurodevelopmental Substrates

- Dual Stream Neurodevelopmental Framework
 - Focus on ventral and dorsal substrates of speech processing in CAS (Hickok, Poeppel, & colleagues, others [see References])

- Generic Speech Processing Framework
 - Seven-element, significantly underspecified framework (Friederici, Guenther, Hickok, Levelt, Maassen, Nijland, Poeppel, Preston, Terband, van de Merwe, Ziegler, others [see References])

II. Speech Processes (Proximal Causes)

- Representation
 - Auditory
 - Somatosensory

- Transcoding
 - Planning
 - Programming

- Execution

SD and CAS

Two Frameworks to Integrate Signs of SD and CAS With Their Genomic and Neurodevelopmental Substrates

- **Dual Stream Neurodevelopmental Framework**
 - Focus on ventral and dorsal substrates of speech processing in CAS (Hickok, Poeppel, & colleagues, others [see References])

- **Generic Speech Processing Framework**
 - Seven-element, significantly underspecified framework (Friederici, Guenther, Hickok, Levelt, Maassen, Nijland, Poeppel, Preston, Terband, van de Merwe, Ziegler, others [see References])

II. Speech Processes (Proximal Causes)

- **Representation**
 - Auditory
 - Somatosensory

- **Transcoding**
 - Planning
 - Programming

- **Execution**

SD and CAS

CAS

Speculative Integration of Four Candidate Signs of CAS with the Dual Stream and Speech Processes Frameworks

<table>
<thead>
<tr>
<th>SDCS Level I</th>
<th>SDCS Level II</th>
<th>SDCS Levels III & IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual Stream</td>
<td>Speech</td>
<td>Four Signs of CAS</td>
</tr>
<tr>
<td>Framework</td>
<td>Processes</td>
<td>Framework</td>
</tr>
<tr>
<td></td>
<td>Framework</td>
<td></td>
</tr>
<tr>
<td>Ventral</td>
<td>Dorsal</td>
<td>Rate</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Pauses</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>Stress</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>Transcoding</td>
</tr>
<tr>
<td>X</td>
<td>Representation</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Planning</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Programming</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Feedforward</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Execution</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>Feedback</td>
<td></td>
</tr>
</tbody>
</table>

(‘Seven Attributes of’) Highly Valued Diagnostic Markers

<table>
<thead>
<tr>
<th>Construct</th>
<th>Premise</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>The higher the diagnostic accuracy of a diagnostic marker the more highly valued in research and clinical settings.</td>
<td>Diagnostic markers deemed conclusive for a disorder require >90% sensitivity and >90% specificity, yielding positive and negative likelihood ratios of at least 10.0 and at most .10, respectively.</td>
</tr>
<tr>
<td>Reliability</td>
<td>The higher the reliability of a diagnostic marker the more highly valued in research and clinical settings.</td>
<td>Reliable diagnostic markers have robust point-by-point intrajudge and interjudge data reduction agreement and internal and test-retest stability of scores, each estimated across relevant participant heterogeneities.</td>
</tr>
<tr>
<td>Coherence</td>
<td>The greater the theoretical coherence of a diagnostic marker the more highly valued in research and clinical settings.</td>
<td>As portrayed in Figure 1, conclusive diagnostic markers (Level IV) for each of the putative SSD subtypes (Level III) are highly valued for integrative descriptive-explanatory accounts when tied to their genomic, environmental, and developmental neurocognitive and sensorimotor substrates (Levels I and II).</td>
</tr>
<tr>
<td>Discreteness</td>
<td>Diagnostic markers from discrete, on-line events are more highly valued than diagnostic markers derived from off-line tallies of events.</td>
<td>Behavioral signs that that can be spatiotemporally associated with neurological events have the potential to inform explanatory accounts of speech processing deficits and identify biomarkers.</td>
</tr>
<tr>
<td>Parsimony</td>
<td>The fewer the number of signs in a diagnostic marker the greater its theoretical parsimony and psychometric robustness.</td>
<td>Each sign required for a diagnostic marker adds theoretical complexity and requires additional (multiplicative) psychometric stability.</td>
</tr>
<tr>
<td>Generality</td>
<td>The more extensive the generality of a diagnostic marker the more highly valued in research and clinical settings.</td>
<td>Diagnostic markers with the most extensive external validity may be used to identify risk for future expression of disorders, identify active expression of a disorder, and postdict prior disorder.</td>
</tr>
<tr>
<td>Efficiency</td>
<td>The greater the efficiency of a diagnostic marker the more highly valued in research and clinical settings.</td>
<td>More highly valued markers require the fewest tasks, equipment, examiner proficiencies and participant accommodations and the least time and costs to administer, score, and interpret.</td>
</tr>
</tbody>
</table>

Shriberg et al. (2014). A pause marker to discriminate Childhood Apraxia of Speech from Speech Delay. Manuscript in preparation. The seven constructs are listed in their estimated rank order of importance.
Participants

<table>
<thead>
<tr>
<th>Group</th>
<th>Cohort</th>
<th>Title</th>
<th>n</th>
<th>Age (yrs)</th>
<th>% Males</th>
<th>Percentage of Consonants Correct (PCC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspected Childhood Apraxia of Speech (CAS)</td>
<td>Idiopathic CAS</td>
<td>CASI</td>
<td>41</td>
<td>8.7</td>
<td>4.1</td>
<td>65.9</td>
</tr>
<tr>
<td></td>
<td>Neurogenetic CAS</td>
<td>CASN</td>
<td>23</td>
<td>10.6</td>
<td>4.8</td>
<td>47.8%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>64</td>
<td>9.3</td>
<td>4.4</td>
<td>59.4%</td>
</tr>
<tr>
<td>Adult-onset Apraxia of Speech (AAS)</td>
<td>Apraxia of Speech</td>
<td>AOS</td>
<td>14</td>
<td>62.1</td>
<td>10.9</td>
<td>78.6</td>
</tr>
<tr>
<td></td>
<td>Primary Progressive AOS</td>
<td>PPAOS</td>
<td>16</td>
<td>72.4</td>
<td>9.1</td>
<td>56.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>30</td>
<td>67.6</td>
<td>11.1</td>
<td>66.7</td>
</tr>
<tr>
<td>Speech Delay (SD)</td>
<td>Clinical Cohort</td>
<td>SD1</td>
<td>88</td>
<td>4.3</td>
<td>1.3</td>
<td>73.0</td>
</tr>
<tr>
<td></td>
<td>Research Cohort</td>
<td>SD2</td>
<td>23</td>
<td>5.5</td>
<td>0.6</td>
<td>72.7</td>
</tr>
<tr>
<td></td>
<td>Research Cohort</td>
<td>SD3</td>
<td>84</td>
<td>3.9</td>
<td>0.7</td>
<td>71.4</td>
</tr>
<tr>
<td></td>
<td>Research Cohort</td>
<td>SD4</td>
<td>30</td>
<td>4.5</td>
<td>0.9</td>
<td>48.3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>225</td>
<td>4.3</td>
<td>1.1</td>
<td>69.2</td>
</tr>
</tbody>
</table>

a Includes participants with copy number variants (n=11) identified in related research, and participants with neurodevelopmental disorders associated with disruptions in FOXP2 (n=4), 4q;16q translocation (n=3), 16p11.2 microdeletion syndrome (n=2), terminal deletion of chromosome 22 (n=1), Joubert syndrome (n=1), and Prader Willi syndrome (n=1).
Madison Speech Assessment Protocol (MSAP)

Four age-based protocols:

Preschool, school-aged, adolescent, adult

Each protocol includes 15 speech tasks

- Articulation Task
- Challenging Word Tasks (2)
- Challenging Phrase Task
- Consonants Task
- Conversational Sample
- DDK Task
- Phonation Task
- Syllable Repetition Tasks (2)
- Stress Tasks (2)
- Vowel Tasks (3)
Classification of a speaker as positive for CAS (CAS+) requires at least 4 of the following 10 signs in at least 3 speech tasks:

- vowel distortions
- difficulty achieving initial articulatory configurations or transitionary movement gestures
- equal stress; lexical or phrasal stress errors
- distorted substitutions
- syllable or word segregation
- groping
- intrusive schwa
- voicing errors
- slow speech rate and/or slow DDK rates
- increased difficulty with multisyllabic words

\(^a\)Dr. Strand provided written anecdotal comments on the sources and rationale for each classification.
Pause Marker (PM) Method

1. Transcribe and prosody-voice code 24 utterances from a conversational speech sample.

2. Complete acoustics-aided procedures to identify occurrences of eight types of inappropriate between-word pauses in each utterance:
 - Type I pauses: abrupt, change, grope, other
 - Type II pauses: addition, repetition/revision, long, breath

3. Calculate PM percentage:
 \[100 \times (1 - \text{No. Type I Pauses/No. Pause Opportunities}) \]
 where No. Pause Opportunities = No. words - No. utterances

4. Criterion for CAS+: PM < 95\%

CAS+ classification for marginal PM scores (94.5% – 95.5%) requires positive findings on at least two of three supplementary standardized signs of CAS (Slow Articulatory Rate, Inappropriate Sentential Stress, Transcoding Errors).
And <uh> when we take a vacation we go <uh> one or two weeks, maybe two or three times a year. [PART] a year.
Procedures to Resolve MCS-PM Classification Disagreements

1. Assembled best estimates of ‘true positive’ and ‘true negative’ CAS groups:
 - Consensus CAS+ Group (n = 35):
 participants classified CAS+ by both diagnostic markers
 - Consensus CAS- Group (n = 15):
 participants classified CAS- by both diagnostic markers

2. Computed descriptive and inferential statistics for relevant demographic and speech variables for and between the two CAS consensus groups; compared findings for each disagreement to findings for the two CAS consensus groups
3. Determined **case-by-case support** for resolving each MCS-PM classification disagreement as either due to conceptual differences in MCS vs. PM criteria for CAS+, or as ‘questionable’ due to either **method constraints** (e.g., insufficient MSAP data) and/or **statistical support** consistent with the alternative Consensus CAS group.

4. Recalculated the estimated diagnostic accuracy of the PM with all ‘questionable’ disagreements excluded.
MCS-PM Classification Agreement Findings: 64 Participants Suspected Positive for CAS

Includes 7 Participants with 'Questionable' MCS+PM- Classifications

Excludes 7 Participants with 'Questionable' MCS+PM- Classifications

Sensitivity 83.3% Specificity 68.2%
MCS-PM Classification Agreement Findings: 30 Participants with AAS (AOS and PPAOS)

- Includes 11 Participants termed "Voicers"
 - Sensitivity 63.3%
 - Percent Agreement:
 - MCS+ PM+ (8/14) AOS: 57.1%
 - MCS+ PM+ (11/16) PPAOS: 68.8%
 - MCS+ PM+ (19/30) AAS: 63.3%

- Excludes 11 Participants termed "Voicers"
 - Sensitivity 100.0%
 - Percent Agreement:
 - MCS+ PM+ (8/8) AOS: 100.0%
 - MCS+ PM+ (11/11) PPAOS: 100.0%
 - MCS+ PM+ (19/19) AAS: 100.0%
SDCS-PM Classification Agreement Findings: 225 Participants with Speech Delay

Specificity 98.2%

<table>
<thead>
<tr>
<th>SD</th>
<th>Agreement (%)</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>SD4</td>
<td>100.0%</td>
<td>30/30</td>
</tr>
<tr>
<td>SD1</td>
<td>98.9%</td>
<td>87/88</td>
</tr>
<tr>
<td>SD3</td>
<td>98.8%</td>
<td>83/84</td>
</tr>
<tr>
<td>SD2</td>
<td>91.3%</td>
<td>21/23</td>
</tr>
<tr>
<td>SD ALL</td>
<td>98.2%</td>
<td>221/225</td>
</tr>
</tbody>
</table>
Conclusions

- The PM provides a single-sign marker that likely can be used cross-linguistically to discriminate CAS from SD, and to scale the severity of CAS.

- The Type I pauses identified and quantified by the PM have theoretical ‘Coherence.’ The claim is that these atypical cessations of continuous speech are consequent to deficits in planning, programming, and/or feedforward processes.

- PM findings are interpreted to meet six of the seven proposed criteria for a highly valued diagnostic marker of CAS, requiring additional research to improve ‘Efficiency.’
Research Directions

Methodological

- Cross-validate the current, estimates of intrajudge and interjudge reliability of the PM (low-to mid 80%)

- Cross-validate the current acoustic correlate (steep amplitude rise time) of the most frequent type of inappropriate pause (Type I: ‘abrupt’) and explore automated detection of ‘abrupt’ pauses

- Develop alternatives to continuous speech samples for speakers suspected positive for CAS who have limited verbal output

- Assess the specificity of the PM for speakers with different types of dysarthria
Research Directions

Substantive

- Assess the informativeness of the PM in collaborative neuroscience studies to explicate the genomic and neural correlates of planning, programming, and feedforward deficits in CAS and AAS toward a biomarker of apraxia of speech.

- Assess the utility of the PM in collaborative studies to characterize normalization processes in CAS and to quantify treatment efficacy in studies of CAS and AAS.
Acknowledgments

Waisman Center Phonology Project
University of Wisconsin-Madison

Marios Fourakis
Sheryl Hall
Andrew Holt
Heather Karlsson
Joan Kwiatkowski
Heather Mabie
Jane McSweeney
Alison Scheer-Cohen
David Wilson

Christie Tilkens

Database Collaborators

Adriane Baylis
Richard Boada
Thomas Campbell
Jordan Green
Kathy Jakielski
Barbara Lewis
Christopher Moore

Katharine Odell
Bruce Pennington
Nancy Potter
Erin Redle
Heather Rusiewicz
Jennifer Vannest

This research is supported by the National Institute on Deafness and Other Communication Disorders [DC00496] and a core grant to the Waisman Center from the National Institute of Child Health and Development [HD03352]. Dr. Shriberg and Dr. Strand have no financial or non-financial relationships to disclose.
References

References

