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Current demands for increased research attention to therapeutic efficacy,
efficiency, and also for improved developmental models call for analysis of
longitudinal outcome data. Statistical treatment of longitudinal speech and
language data is difficult, but there is a family of statistical techniques in common
use in medicine, actuarial science, manufacturing, and sociology that has not
been used in speech or language research. Survival analysis is introduced as a
method that avoids many of the statistical problems of other techniques because it
treats time as the outcome. In survival analysis, probabilities are calculated not
just for groups but also for individuals in a group. This is a major advantage for
clinical work. This paper provides a basic introduction to nonparametric and
semiparametric survival analysis using speech outcomes as examples. A brief
discussion of potential conflicts between actuarial analysis and clinical intuition is
also provided.
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There is a family of statistical methods designed for the analysis of
longitudinal data that has potential usefulness in studying both
normal and disordered speech and language development. In the

social sciences, it is called “event history analysis,” whereas in engi-
neering and manufacturing, these methods are called “reliability” or
“failure” analysis. The term employed here, “survival analysis,” follows
the convention of the medical professions.

This paper provides a general introduction to survival analysis. It
reviews why survival analysis avoids some of the pitfalls common to
more familiar statistical methods, has advantages for clinical speech
and language applications, and is timely for the study of treatment effi-
cacy and efficiency. A tutorial on techniques of most likely application to
speech and language disorders is presented. Finally, a scenario is of-
fered illustrating how these techniques might support or conflict with
clinical intuition.

Most research concerning individual behavior change treats time or
age as a predictor (Willett & Singer, 1989, 1991). Age or time is treated
as an independent variable. A measure of behavior is treated as the
dependent variable. In survival analysis, time is treated as the outcome.
Instead of asking how rapidly clients change over time, the researcher
asks, “How much time must pass before a client displays a change in

*Currently affiliated with Lamar University, Beaumont, TX.

Downloaded From: http://jslhr.pubs.asha.org/ by Health Sci Learning Ctr, Lawrence Shriberg on 10/05/2017
Terms of Use: http://pubs.asha.org/ss/rights_and_permissions.aspx



Gruber: Survival Analysis      433

X?” Because time is considered an outcome, it is not con-
sidered causative.

A second type of question addressed in survival
analysis is “Given that a client has not changed by time
period t, what are the chances the client will change by
the next time period(s)?” In communicative disorders,
the question addressed might be “How long will it be
before X speaks normally?” or “...pronounces /s/ cor-
rectly?” or “Do you think X will speak normally by this
time next year?”

A third type of question that can be addressed in
survival analysis is “How do probable outcome times
differ between groups of clients?” or “How are different
treatments likely to influence outcome times?” These
questions correspond to “Do children with chronic otitis
media take longer to reach the same level of speaking
proficiency than children who do not have chronic otitis
media?” and “Which therapy regimen will most likely
achieve a therapy goal more quickly?”

Survival analytic techniques are designed to estab-
lish empirical estimates of the probabilities that an in-
dividual will experience a qualitative change of state at
a given time. Change of state may be defined as the
crossing of some consistent threshold. Such thresholds
might include well-defined therapy goals such as 90%
of consonants correct in conversational speech, no dis-
fluencies in 3 minutes of conversation with a stranger,
or the correct use of 10 successive prepositions in nar-
rative discourse.

Some Statistical Problems in
Longitudinal Studies

Many difficulties intrinsic to the more familiar and
commonly used statistical treatments for longitudinal
data such as correlation, regression analysis, growth
curves, structural equation modeling, and analysis of
variance can be avoided by adopting survival analysis.
These difficulties include ceiling and floor effects, het-
erogeneity of variance, treating language as a fixed ef-
fect, autocorrelation, and regression to the mean
(Blossfeld & Rohwer, 1995; Clark, 1973; Gruber, 1997).

Ceiling and Floor Effects and
Heterogeneity of Variance

Ceiling and floor effects occur when a task is either
very easy or extremely difficult for participants. The
distribution of scores on a task that is too easy pile up
on the “correct” side (i.e., negatively skewed), with little
variance and high mean correct scores. Tasks that are
too difficult show a positively skewed distribution, low
mean correct scores, and, again, little variance. Hetero-
geneous participant samples appear homogenous when
judged by measures near floors and ceilings. All of the

traditional statistical methods, parametric or nonpara-
metric, then become invalid (Campbell & Boruch, 1975;
Hayes, 1973; Marascuilo & Levin, 1983).

Survival analysis avoids ceiling and floor effects
because the single score used is the time (age) when a
participant achieved a score that crossed the chosen
threshold. As long as a high proportion of participants
in a study cross the threshold during a study, there are
no problems with heterogeneity and ceiling and floor
effects.

Language as a Fixed Effect and
Autocorrelation

Almost all speech and language studies treat speech
and language as a fixed effect. Usually only a few rela-
tively small speech or language samples are taken. For
example, articulation, vocabulary, and many syntactic
tests use the same small set of words or sentences to
gauge the overall language performance of participants.
These speech or language samples are incorrectly treated
as though they represented the whole linguistic reper-
toire of the language, leading to considerable measure-
ment error (Clark, 1973; Leonard & Orchard, 1996).

Furthermore, in most clinical studies the number
of participants is small compared to the population size,
resulting in sampling error. When this source of error
combines with measurement and other experimental
error, the primary error term in statistical equations
can become large. Thus, study results could well mis-
represent the real-life situation (Nunnally, 1978).

If these error terms are correlated over time, they
are not independent. This problem is described as
“autocorrelation,” and “serial dependency.” This is a se-
rious violation of a basic assumption of parametric sta-
tistics (Kirk, 1982; Maxwell & Delaney, 1990). Sources
of such bias include the failure to use uninformed, ex-
ternal evaluators of speech or language status, the use
of reliability training and consensus transcription tech-
niques, and the use of forced-choice measures, which
constrain the kinds of errors possible. Thus, some of the
errors made in collecting and scoring data are consis-
tently biased across measurements. Parametric statis-
tics are robust, with some measurement error, but only
if the errors are randomly distributed.

In survival analysis, autocorrelation does not cre-
ate a statistical calculation problem, again, because only
a single measurement for each participant enters into
the calculation. However, survival analysis results will
reflect whatever bias entered into the chosen threshold
crossing time. If poor procedures, language samples, or
tests are used, survival analytic results will accurately
reflect the poor measurement choices that were made.
Unlike traditional methods, however, survival analysis
will not compound the problem.

Downloaded From: http://jslhr.pubs.asha.org/ by Health Sci Learning Ctr, Lawrence Shriberg on 10/05/2017
Terms of Use: http://pubs.asha.org/ss/rights_and_permissions.aspx



434      Journal of Speech, Language, and Hearing Research  •  Vol. 42  •  432–447  •  April 1999

Regression to the Mean
Another statistical problem in longitudinal research

is regression to the mean. Scores that are far from the
mean tend to move toward the mean in subsequent
measurement. Because the combination of factors
(known and unknown) that co-occur to contribute to an
extreme score is not likely to recombine in subsequent
measurement, the score can be expected move toward
the mean (Furby, 1973).

Regression to the mean can be confused with thera-
peutic success and learning. Tomblin, Zhang, and
Buckwalter (1997), in a preliminary report of a well-
controlled, stratified epidemiological sample of 203 chil-
dren screened primarily for language delay, found that
all of the improvement in language scores they measured
from kindergarten to second grade could be accounted
for by regression to the mean alone.

Participant selection based on extreme scores may
also be biased by regression to the mean. A candidate
may qualify for inclusion in a study because of an ex-
treme score. Were the measure repeated, the candidate
might not qualify because of regression to the mean.

Survival analysis involves a single measure for each
participant, so there can be no statistical regression to
the mean. However, only extraordinary care in the de-
sign and analysis of studies can surmount the partici-
pant selection problem.

Some Characteristics of Survival Analysis
Survival analytic studies yield individual results.

In survival analysis, there is no averaging or summing
across individual scores. Thus, results can be applied to
individuals in a clinical setting. This contrasts with
group analysis—the results of articulation or language
tests are typically compared to grouped performances
(e.g., means, standard deviations, mental ages, stanine
scores, or percentiles). With survival analysis, a report
could provide an estimate of the chances of an individual
achieving a designated normal range score at some later
time. It would then be possible to estimate how rates of
improvement and clinical outcomes would most likely
change, depending on the type and extent of interven-
tion provided.

Because survival analysis was developed for clini-
cal application, few changes in standard clinical proce-
dures in speech pathology would need to be made to con-
duct a clinical research study. Clinics may have
maintained records suitable for retrospective studies
using survival analysis. There are several essential com-
ponents: The group studied must be a sample of a well-
defined population. Some consistent and well-defined
outcome measure must have been recorded, at fairly

consistent, reasonably closely spaced intervals, until
most (but not all) of the sample achieved a specified
outcome.

Of course, individuals in a study group should have
been treated equivalently during the study. For example,
all participants should have received the same therapy.
However, if two different therapies were used, and there
was a large enough number of outcomes in each therapy
group, then it might be possible to divide the partici-
pant sample according to therapy type. The two thera-
pies could then be compared for efficacy and efficiency.

To understand how individuals change with or with-
out intervention, longitudinal studies are required. Such
studies pose practical problems (e.g., subject retention),
but survival analysis is relatively tolerant of the loss of
study participants and other limitations of these studies.

Censoring
Censoring occurs when individuals in a study

sample are lost to the study or fail to display the target
outcome behavior. There are four basic categories of cen-
soring: right, left, interval, and informative. Each cat-
egory is defined in Table 1. Uncensored outcomes are
the basis for probability calculation in survival analy-
sis. The number of uncensored outcomes is considered to
be the size of the study sample, not the number of par-
ticipants entering a study.

Although censoring creates serious problems for tra-
ditional data analysis, it poses far less difficulty for sur-
vival analysis, provided a reasonable contingent of un-
censored qualitative changes remain (Allison, 1984). In
survival analysis, all right-censored data are utilized. A
variety of techniques is also available to estimate gaps in
data caused by interval censoring (Klein & Moeschberger,
1997; Pan, 1997). However, informative and left censor-
ing can create insoluble problems (Collett, 1994).

Efficacy and Efficiency Applications
Fiscal restraints in educational and health care set-

tings have had an impact on the delivery of services pro-
vided by speech-language pathologists. Included in these
trends are changes in case selection and dismissal cri-
teria, increased third-party billing, and pressures to
provide better and more objective outcome measures
(Taylor, 1992; Trace, 1995; Trulove & Fitch, 1998). At-
tention will need to be directed toward the ability of
speech-language pathologists to formulate more precise
and complete prognoses and to cite more specific and
objective evidence for efficacy and service efficiency
(Pearson, 1995). Although “a prognostic statement is not
only required by the ASHA Professional Services Board
standards but is required by...fair play and logic,”
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(Petersen & Marquardt, 1994, p. 303), these statements
must be specific so that those who are fiscally respon-
sible can compare alternatives on a dollars-and-cents
basis (ASHA, 1992; Pearson, 1995). The American
Speech-Language-Hearing Association has established
a National Outcomes Measurement System (ASHA,

1999). Survival analysis should be among the methods
considered for analysis of the outcome data.

Survival Analysis
The basic approaches to survival analysis are non-

parametric, semiparametric, and parametric. Nonpara-
metric and parametric approaches model the time it
takes for an outcome or event to occur. Semiparametric
approaches, also known as the proportional hazards
model or the Cox regression model, sacrifice specific
outcome times in order to sharpen tests of differences
among groups or treatments.

Table 2 is a summary of the types of survival analy-
sis, including a brief guide for selection of the most ap-
propriate model. Nonparametric survival analytic ap-
proaches are appropriate when sample sizes (the number
of uncensored outcomes) are small. In survival analy-
sis, “small” is usually interpreted to be in the hundreds
or less, although other considerations such as the spac-
ing of outcomes across a study window may also be taken
into consideration. Interval censored data, when the
interval between measurements is fairly large compared
to the duration of the study window, also dictates a non-
parametric treatment. Time in some studies is scaled in
interval-length units, so nonparametric approaches also
have become known as discrete-time methods. If time is
measured continuously, parametric or continuous-time
approaches are appropriate (Allison, 1984).

To estimate when a given level of performance has
been reached, it is often necessary to probe responses
at intervals (i.e., interval censoring). Interval censored
outcome times are inexact. Because it is impractical to

Table 1. Definitions for the four categories of censoring and for
uncensored outcomes in survival analysis.

Category Definition

Left censored The outcome of interest has occurred for a
participant before observations for a study
have begun.

Uncensored The outcome is observed during the study
window.

Right censored The outcome of interest has not been observed
for a participant after the last observation for
a study has been made.

Type I ...because the outcome occurred after the
study was over or the outcome never occurred
for a participant.

Type II ...because the study was aborted before the
outcome of interest occurred for a participant.

Type III ...because the participant was lost to the study
before the outcome of interest was observed.

Interval censored The event of interest for a participant occurred
between relatively wide-spaced observations.

Informatively censored Observation of the event of interest was not
possible or the time of observation changed
for a reason associated with the nature of the
outcome itself.

Table 2. The types of survival analysis with annotations.

Type of survival
analysis Recommended for use when Introductory reference(s)

I. Nonparametric 1. Sample size (outcomes) is small to large.

2. All observations are measured from the same starting point.

3. Time (or an equivalent notion) to a change of state outcome is important. Allison, 1984; Harris & Albert, 1991

A. Life table Observation windows are of equal size and are equally grouped. Allison, 1984; Nelson, 1982

B. Kaplan-Meier Observation windows are of unequal size. Allison, 1984; Collett, 1994

II. Semiparametric 1. Sample size is moderate to large.
(Cox) 2. Hazards are proportional.

3. Differences between factors or variables are important.

4. Time (or an equivalent notion) to an outcome is not important. Cox & Oakes, 1984; Teachman, 1983

III. Parametric 1. Sample size is large.

2. All observations have the same starting point.

3. Estimation of the distribution is important.

4. Modeling of factors and variables is important. Blossfeld & Rohwer, 1995; Collett, 1994;
Lee, 1992
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recruit thousands of participants and continuously moni-
tor each, longitudinal speech-language studies are usu-
ally subject to these limitations. Therefore, the appro-
priate survival analytic methods for application in
speech-language pathology research are almost certain
to be discrete-time. The following discussion and examples
focus on nonparametric approaches. Semiparametric and
parametric approaches are only briefly mentioned.

Functional Relationships
In classical survival analysis, the research purpose

is to determine how long a patient can be expected to
live, given a certain diagnosis or treatment (hence, “sur-
vival” analysis). Rephrasing this question to ask the
probability of t amount of time passing before death gives
the cumulative survival function estimate:

S(t) =

The number of people 
surviving to time t

The total number of patients
^ (1a)

To discover how long a patient might be expected to
live after contracting some deadly disease, the researcher
might examine the death certificates and the medical
records from 1,000 individuals. By rank ordering the
amount of time it took individuals to die after diagnosis
with the disease (death from other causes would consti-
tute right censoring, which reduces the size of the risk
set) Equation 1a can be used to provide a sample esti-
mate of the probability of surviving. The time scale for
participants may begin upon diagnosis with a disease
or condition, upon hospital admission, exposure to a
toxin, or initiation of a treatment regimen.

In communicative disorders, the outcome of inter-
est will more likely be a positive one. Normalization is
such an outcome. Normalization can be said to occur
when an individual who has not previously met a spe-
cific set of desired criteria that defines a normal range
of speech or language production meets the designated
criteria. For communicative disorders, “normalization
analysis” would be a more transparent term. Survival
time in Equation 1a would be the same as failing to nor-
malize time in Equation 1b below:

S(t) =

The number of people who did
 not normalize by time t

The total clinical sample chosen
^ (1b)

In Equation 1a-b, the value of t is determined for
all individuals in a study by the investigator’s choice of
a zero point in the scaling of time. For communicative
disorders the zero point may be the first clinical refer-
ral, first assessment, beginning of a school year, and so
forth. A developmental study may set the time scale
equal for all participants by using chronological age,

gestational age, bone age, or achievement of some mile-
stone (e.g., standing unaided, babbling, 50-word vocabu-
lary, school entrance, puberty).

A word of caution is in order concerning the selection
of a zero point for the beginning of a study. Suppose a
researcher requested that children with specific language
impairment (SLI) be referred for a planned study. If test-
ing intervals in the planned study were 4 months apart
and the children referred were the same age, give or take
2 months, there is no problem. However, if the children
referred varied in age by much more than half the testing
interval size, a serious problem called left truncation could
occur. Suppose further that some children were 3 years
old when referred, whereas others were as old as 5. Some
children between 3 and 5 years old might have been re-
ferred had they been diagnosed at age 3, but were not
referred because they had normalized by the time they
were noticed by referral sources. When this happens, the
sample of children will not include some children who
normalized at the younger ages. Therefore, the study will
result in a false picture of the age of normalization in SLI
children (Klein & Moeschberger, 1997).

The choice of a zero point for the time scale does not
preclude employing other temporal measures. They may
be introduced as factors or variables. For example, chro-
nological age may be a variable in a study that exam-
ines the time it takes for a treatment to produce results.

The probability of normalizing (the failure function)
is the complement to Equation 1b:

F(t) = 1 – S(t) (2)

The cumulative failure function, F(t), is used in
medical applications to determine the probability of
death at a given elapsed time. In industrial applications,
it is used to determine and study product life. With posi-
tive outcomes, the same probabilities will correspond to
recovery or normalization.

There are six functions of interest in survival analy-
sis: the cumulative survival function, S(t); the survival
density function, s(t); the cumulative failure function,
F(t); the failure density function, f(t); the cumulative
hazard function, H(t); and the hazard density function,
h(t). Capital letters are used here to denote cumulative
functions; lower-case letters denote density functions.
The relationship between the survival and failure func-
tions is a reversal of the time scale.

The hazard density function for a sample is defined
as:

h(t) =
Σd^ ij

(Σs ) (w)i j
(3)

where Σdi,j = the total number of individuals who nor-
malized (died or experienced an outcome, indicated by
the subscript i) in the time period wj (interval width,
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where the interval is indicated by the subscript j), Σsi =
the total number of individuals who failed to normalize
(i.e., survived).

The hazard density function is the outcome (i.e., nor-
malization, death) rate for each time interval. In discrete-
time (i.e., nonparametric) analysis, the hazard refers to
the probability that an event (i.e., normalization, recov-
ery, death) will occur in a particular time interval to an
individual, given that individual is at risk (available)
during that time interval. The hazard density function
generates actuarial tables that list the probability of
death per day (week, hour, etc.).

Referring to Table 2, the following analogy illus-
trates how time is treated differently in different kinds
of survival analysis. Imagine the finish line (outcome)
in a cross-country race. In the case of life table analysis,
the hazard rate would be based on the number of run-
ners crossing the finish line within some broad, but equal
intervals, say every 10 minutes. In Kaplan-Meier (here-
after, KM) analysis, the hazard rate would be based on
the time span between each successive runner crossing
the line. For each time interval, a single runner crossed
the line sometime between the runners who came be-
fore and after, but the exact time would not be known.
In parametric analysis, the exact time each runner
crosses the finish line is known.

The relationship of the hazard function to the sur-
vival and failure functions is:

h(t) = f(t)
S(t)

(4)

The hazard is the number of individuals crossing the
threshold (finish line) in each time period, f(t), divided
by the total number of people in the same time period
who could have, but did not yet cross the threshold, S(t)
(the runners still on the course). For nonparametric
analysis, this equation shows that the hazard is the prob-
ability that an individual will cross the threshold in a
given time interval. In continuous-time (parametric)
analysis, the time intervals are infinitesimal. This means
that the hazard can be a number larger than 1 with no
upper bound, so it is not interpretable as a probability.
Instead, continuous-time hazard rates are often thought
of as the force, or pressure toward, risk or chance of
threshold crossing at an instant. From Equation 4, it
can be seen that the six functions are different perspec-
tives on the relationship between time and outcome for
individuals at risk of experiencing an event. The six func-
tions can be transformed from one to another.

Life Tables, the Actuarial Approach
The model in Equation 1a-b underlies the life table.

The life table is a technique to provide nonparametric

estimates of a function. For each data point, a charac-
teristic life table contains the proportions dying (i.e.,
normalizing or recovering) and continuing (i.e., failing
to normalize or recover); the cumulative proportion of
participants continuing at the beginning of the interval
(continuing function); the conditional prospect (hazard)
function, which is the rate of normalization before a
specified time interval; and the density function, which
is the probability of normalizing within a specified time
interval (Allison, 1984; Collett, 1994; Palloni & Sorensen,
1986). The cumulative proportion surviving (failing to
normalize, survival function) can easily be calculated,
but is not often presented in life tables.

The construction of life tables is straightforward as
can be seen using data presented by Kumin, Councill,
and Goodman (1994). The speech status of 60 children
with Down syndrome (0;9 to 9;0) was examined at 3-
month intervals to determine the first time individual
consonant phonemes emerged in the speech of each child.
The number of children who exhibited emergence for each
sound was reported in yearly intervals. Thus, the reported
data can be reanalyzed in life tables. Because there are
too few outcomes, they cannot be fully modeled.

It might be of interest to know when a phoneme, for
example /s/, is likely to emerge in the speech of a child
with Down syndrome. To find out, we would subject the
data to an actuarial analysis by arranging it as in Table
3. Column 1 numbers the age intervals from youngest
to oldest. Column 2 is the interval size in months. Col-
umn 3, dj, shows the number of children whose tran-
scripts showed the outcome, i.e., the emergence of /s/
within the time span shown in Column 2. Column 4, cj,
shows the number of children in each age range who
were right censored. According to these data, 13 chil-
dren never had /s/ emerge in their speech before the
study ended, so all are listed in the last time period. No
one dropped out of the study. Column 5, nj, is a list of
the total number of children for whom /s/ did not emerge
in speech at each time period. (Except for the last row,
this number will be the same as Column 5, nj, minus
Column 4, cj, since right-censored children are no longer
in the study). Column 6, nj′, is a list of the number of
remaining children at each age period who have not had
/s/ emerge in their speech. If we assume that censoring
occurs uniformly throughout the interval j′, the average
number of individuals at risk during this interval is:

n ′ = n  –
c

j j
j

2
(5)

This is known as the actuarial assumption, so 13/2 or
6.5 is entered in the last row of this column.

Column 7, (nj′ – dj)/nj′, is a list for each age interval
of the probability that a child in the study left the inter-
val without having had /s/ emerge. This is calculated as
indicated by the column heading. Column 7 may also be
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interpreted as the outcome probability density function,
s(t), corresponding to the cumulative outcome probabil-
ity in Column 8, S(t).

If each proportion in Column 7, (nj′ – dj)/nj′, is mul-
tiplied by the probability in Column 8, S(t), (in the same
row), the result is the probability that a child will not
have had /s/ emerge by the next age range. In the first
row, the initial probability will always be 1 since, at the
beginning, left-censored individuals cannot be included.
This allows construction of the cumulative survival func-
tion, S(t), of Column 8. Because the figures in Column
7, (nj′ – dj)/nj′, and Column 8, S(t), range from 0 to 1, and
the question being addressed is the probability at each
age range that a child with Down syndrome will have /s/
emerge, we can find this by subtracting each probabil-
ity S(t) from 1, according to Equation 2. The result is
F(t) (Column 9). Figure 1 is a graph of results from the
calculations in Table 3.

The rightmost column in Table 3, SE S(t), is the stan-
dard error for S(t) for each age range. This is calculated
as in Equation 6 by taking the square root of the prod-
uct of the cumulative failure, F(t), and survival func-
tions, S(t) in Table 3, divided by the sample size, N = 47.
In survival analysis, sample size is always the number
of uncensored outcomes, not the number of participants
in a study.

SE =
S(t) F(t)

N
(6)

The estimate for the standard error of the survival
function is placed in the row above the row in which the
calculation was made, since that is the time period when
the error occurred. Recall that the calculations for S(t)

occurred in the row below the one in which calculations
were made.

The original question of when /s/ is likely to emerge
in the speech of individuals with Down syndrome is an-
swered. Column F(t) of Table 3 is a list of the probabili-
ties, accumulating annually up to 10 years of age. For
example, the chances are 4 out of 10 [Column F(t), Row
4] with standard error of plus or minus about 7 out of
100 [Column SE S(t)] that /s/ will emerge by 47 months
of age (Row 2). The chances of /s/ emerging improve to
6.5 out of 10 by 59 months of age (Row 5), and so on. The
probability of /s/ emerging in each year f(t), the dashed
line in Panel A of Figure 1, can be calculated by sub-
tracting successive entries in the cumulative column F(t).
Panel B of Figure 1 is the hazard function, h(t). This
panel is a graphic of the rate of emergence of /s/ in the
Down syndrome children in each year of the study. Cal-
culation of h(t) was accomplished according to Equation
3. Panel B shows the probability that each Down syn-
drome child would have /s/ emerge in each yearly inter-
val, provided they had not had /s/ emerge previously.
Based on this analysis, we know (a) F(t), the overall prob-
ability of /s/ emerging in the speech of individual Down
syndrome children by the time they reach any age to
age 10; (b) f(t), the (unconditional) probability for each
age to age 10; and (c) h(t), the (conditional) probability
for an individual child at each year of age who hasn’t
already had /s/ emerge. Provided the research sample
represents the population seen in a given clinic, these
estimates are directly applicable to individual children
in that clinic. The reader can repeat the above calcula-
tions for the remaining 23 sounds (see Kumin et al.,
1994).

Table 3. Construction of life tables. Data are from Kumin et al. (1994).

Interval Interval age
number range in months dj cj nj nj’ (nj’ – dj)/nj’ S(t) F(t) SE S(t)

1 0–11 0 0 60 60 1.0 1.0 0.0 0.0
2 12–23 4 0 60 60 .933 1.0 0.0 .036
3 24–35 20 0 56 56 .643 .933 .067 .071
4 36–47 15 0 36 36 .583 .600 .400 .070
5 48–59 4 0 21 21 .810 .350 .650 .066
6 60–71 1 0 17 17 .941 .283 .717 .065
7 72–83 1 0 16 16 .938 .267 .733 .063
8 84–95 1 0 15 15 .933 .250 .750 .062
9 96–107 1 0 14 14 .929 .233 .767 .060

10 108–119 0 13 13 6.5 1.0 .217 .783 .060

Note. The subscript j indicates “within the time interval.” d
j
 = the number experiencing the event (e.g., dying or /s/

emerging) in the interval. c
j
 = the number right censored (leaving the interval without experiencing the event). n

j
 =

the total number not experiencing the event in the interval (alive, for whom /s/ did not yet emerge). n
j
’ = the

average number in the interval who remain at risk of experiencing the event. See text concerning the actuarial
assumption. (n

j
’ – d

j
)/n

j
’ = the probability of surviving (not dying, not having /s/ emerge) in the time interval. This

corresponds to the survival density function, S(t).
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Compare these results to the original report (Kumin
et al., 1994). They reported the mean, median, and modal
ages at which each of 24 consonant sounds emerged in
the speech of their children with Down syndrome. They
also reported how many children showed emergence of
each sound in each age period.

Kaplan-Meier (KM) Analysis
Actuarial analysis requires that all participants in

a study be observed at the same time; otherwise, the
times of observation must be grouped. In practice, it may
not be possible to observe all participants in a study al-
most simultaneously. The primary difference between

the actuarial approach and the KM approach is that the
actuarial approach groups outcomes into equal inter-
vals, whereas the KM approach rank orders outcomes.
In KM analysis, there is a single outcome (or tied out-
comes) in each (time) period. The duration of the period
may vary. In the actuarial approach, the period is fixed
and the number of outcomes is variable. Otherwise, the
two techniques are similar.

Kaplan and Meier (1958) provided an estimator for
S(t) called the product-limit estimator. This estimator
assumes that observed event times are arranged in an
increasing order, t1 < t2 <…< td, where d is the total num-
ber of events observed. If N(tj), where j indicates the time
interval, are individuals observed not to have normal-
ized (i.e., are at risk) at tj, d(tj) normalize (die) at tj and
c(tj) are censored (do not normalize) in the interval (tj,
tj+1), the KM estimator is defined as:

S(t) =
1 – d(t )

N(t )
j

jj(j:t < t)
Π (7)

with the associated estimator of the conditional pros-
pect rate (hazard rate) being the ratio d(tj) to N(tj). In
KM analysis, intervals are regarded as independent
events.

The KM approach is illustrated in the following ex-
ample (Weiner & Wacker 1982). The study followed 10
normal children and 10 children with severe speech de-
lay over three 6-month intervals. This example is fo-
cused on correct articulation of [z] in the word zipper
among the children with speech delay. Table 4 is con-
structed in the same manner as actuarial Table 3. The
conventions and notations used are identical to those
employed in the actuarial table.

Column 1, “Case,” is the number assigned to par-
ticipants ranked from the youngest to the oldest age at
which the [z] was correctly articulated or at which the
subject was censored. Column 2 is a list of the age in
months for each child at the session during which [z]
was first correctly articulated. Notice that Cases 6 and
7 occurred at the same age.

Column 3, cj, is the censoring status for each par-
ticipant at the outcome age in Column 3 (age). The “LC”
for Child 1 at 51 months of age indicates the child was
left censored. He produced [z] correctly the first time he
was tested. Consequently, all we know is that sometime
from birth to age 51 months, this child acquired the abil-
ity to articulate correctly the [z] in zipper. Because the
size of this uncertainty is so great, this child is omitted
from the analysis. Left censoring such as this can be a
serious threat to the validity of a study. The next 2 sub-
jects were right censored at 58 and 59 months of age,
respectively. Child 2 was right censored after being tested
only twice. (He moved away from the area.) This is Type-
III right censoring (see Table 1). Child 3 was tested three

Figure 1. Panel A shows the step functions for the cumulative
normalization function, F(t), and the normalization density
function, f(t), taken from Table 3, based upon the data reported
by Kumin et al. (1994). Panel B shows the hazard density
function, h(t).
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times; then the study ended. He still had not articulated
the [z] correctly. This is right censoring, Type I.

It is not necessary to identify the type of right cen-
soring in KM analysis. All right censoring is usually just
labeled “censored” or “c.” The fourth child was uncen-
sored, “u.” He first uttered [z] correctly at 63 months, at
his second testing. All outcomes were interval censored
because the children were tested at 6-month intervals.
Interval censoring can cause serious methodological
problems. The oldest age in each interval could be arbi-
trarily taken as the age at which the children acquired
the [z] sound. This strategy is often used in KM analy-
sis to cope with interval censoring. It provides the most
conservative, if not the most accurate, estimates. An
alternative is to use the midpoint of each interval so
that the standard error is bidirectional, not unidirec-
tional as it would be if interval endpoints were used.

Column 4, dj, corresponds to the same column in
actuarial Table 3. In KM analysis, this is restricted to 0
or 1. In actuarial analysis, any number may be entered
into the rows. The number in this column is the number
of children correctly producing [z]. Because each child
is listed separately, the number is a 1 if the child cor-
rectly produced the sound and a 0 if the child was right
censored.

Column 5, nj, is the number of children who remain
in the study (were not right censored and remain at risk)
and who have not yet produced [z] correctly. With only a
single individual in each time interval, it is no longer
necessary to distinguish nj from nj′. Columns 6 through
9 are calculated in the same manner as in the actuarial
example. An exception occurs when outcome times are
tied, as happened for Participants 6 and 7. When this
occurs, S(t) must also be the same, although the propor-
tion (nj – dj)/nj will be calculated for each case. The high-
est ranking (last calculated, longest time-span) figure
is applied retroactively to the preceding case (time) as
can be seen for these rows in the rightmost three col-
umns of Table 4.

Column 8, F(t), is a list of the cumulative probabili-
ties that a child in this study articulated the [z] in zipper
correctly by the age in Column 2. Column 6, (nj – dj)/nj, is
the corresponding density function, s(t). These results
are presented in Figure 2.

Panel A of Figure 2 is a representation of the survival
density function, s(t), from Column 6 of Table 4, (nj – dj)/nj,
and the cumulative survival function, S(t), from Column
7. Panel B is a display of the corresponding failure den-
sity function, f(t), which is not presented in Table 4, and,
from Column 8 of Table 4, the cumulative failure func-
tion, F(t). Because the outcome concerned is of a posi-
tive nature, the failure functions in Panel B represent
the probabilities of the first correct use of the /z/ in zip-
per. The survival functions in Panel A represent the prob-
abilities that individuals will not yet have uttered
/z/ correctly.

The dotted line in Panels A and B that occurs be-
tween the ages of 68 and 76 months is provided to show
the two outcomes between these ages for Cases 6 and 7
from Table 4. The hazard functions are presented in
Panel C. The hazard density function is calculated from
the survival and failure functions by using Equation 4.

The hazard density function, h(t), represents the rate
(per month) at which the first correct use of the /z/ in
zipper was recorded in each time interval. This func-
tion is known as the age-specific failure rate, or the force
toward the outcome. The solid line represents the (inte-
grated) cumulative hazard rate, H(t). The cumulative
hazard rate is related to the cumulative survival func-
tion, S(t):

H(t) = –loge S(t) (8)

By substitution, it is also true that:

f(t) = h(t) exp[–H(t)] (9)

In Panel C, unlike the survival and failure functions,
which can only assume values from 0 to 1, both hazard
functions can take any positive value. This is because they
are rates, not probabilities. It is also possible, as can be

Table 4. Construction of a Kaplan-Meier table. Data were taken from Weiner and Wacker (1982). The
outcome is correct pronunciation of the [z] phone in “zipper.”

Case  Age (months) cj dj nj (nj – dj)/nj S(t) F(t) SE S(t)

1  51 LC — — — — — —
2  58 C 0 9 1 1 .000 .000
3  59 C 0 8 1 1 .000 .000
4  63 U 1 7 .857 .857 .143 .132
5  65 C 0 6 1 .857 .143 .132
6  68 U 1 5 .800 .514 .486 .204
7  68 U 1 4 .750 .514 .486 .204
8  76 C 0 3 1 .514 .486 .204
9  78 U 1 2 .500 .257 .743 .208

10  82 U 1 1 0 0.0 1.000 0.0
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seen for the last age interval (from 78 to 82 months),
that the cumulative hazard rate, H(t), can be smaller
than the density hazard rate, h(t). This is because ac-
cumulation, or integration, takes into account previ-
ous smaller rate values. In panel C, H(t) is smaller
(slower) than h(t) at the last age interval because the
previous intervals (cf. from 76–78 months) were zero.

The cumulative hazard rate, H(t), is interpreted as the
overall rate of the outcome measure, accumulated up to
and including each successive time interval.

Life table estimates approach KM estimates when-
ever time intervals are small and/or the number of events
is large. The KM estimates of S(t) and the conditional
prospect (hazard) are influenced by biases for small
samples, but corrections are available (Aalen, 1978;
Nelson, 1982). These estimates have been shown to have
good large sample properties (Kaplan & Meier, 1958).

Some Methods for Group Comparison
In survival analysis, groups can be contrasted eas-

ily. This feature is advantageous in efficacy studies, clini-
cal trials, and basic research. This section is a presenta-
tion of some common methods for comparing groups.

The example selected was designed to evaluate the
efficacy of a therapy called “Metaphon” (Dean, Howell,
Waters, & Reid, 1995). The units of phonological analy-
sis in Metaphon are natural phonological processes
(Stampe, 1969, 1972). Thirteen preschool children with
speech delay participated for an average of 17 half-hour
sessions held once a week. Change was assessed every
third session. All of the children completed the study, so
only Type-I right censoring occurred. Before the study
began, each child was assessed, and baseline measures
for natural phonological processes were established. For
each child, three processes that were operating at a 100%
level were chosen. One of these processes served as a
control throughout the entire study. The other two pro-
cesses were targets for Metaphon treatment from the
same experienced clinician. The two treatment processes
were handled sequentially. A phonological process was
selected as the first target for therapy, which was con-
ducted until the process was suppressed at least 50% of
the time. After reaching this criterion with the first pro-
cess, treatment began on the second process, which was
treated until it also reached this criterion or until the study
ended. No therapy was targeted for the control process,
although its course was assessed as in treatment.

The authors only reported the processes that were
chosen for 9 of the 13 children for whom therapy suc-
cess was found, so no reanalysis of results using pro-
cesses as a covariate are possible. However, it is appar-
ent from the reported processes that velar fronting was
over-represented in the first phase of treatment, and
gliding of liquids was over-represented as a control pro-
cess. Velar fronting was never a control process. Liquid
gliding was never treated during the first phase. There
is a better balance among process types for the second
phase of therapy and the control processes, so the ex-
ample will use only the results from the second phase of
therapy.

Figure 2. Panel A shows the survival functions, S(t) and s(t), which
indicate the probabilities an individual had not yet achieved
correct articulation of /z/. Panel B shows the normalization
(failure) functions, F(t) and f(t), which indicate the probability of an
individual achieving correct articulation of /z/. Panel C shows the
hazard functions, H(t) and h(t), which show the aggregate and
age-specific rates of first correct articulation of /z/. Data are from
Table 4 based on a report by Weiner and Wacker (1982).
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Table 5 is a KM analysis of the therapy outcomes
and the control processes. The level of suppression of
the processes employed as a cutoff was 85%. In Col-
umn 1, the participant number corresponding to Dean
et al. (1995) is shown in parentheses. The session num-
ber is shown to the right. There were no outcomes for
either group before Session 4, so earlier sessions were
omitted.

The notations in this example correspond to those
previously employed. Columns 2 and 8, ni, are the num-
ber of children remaining at risk, that is, who have not
yet normalized for the control process and the treatment
process, respectively. Columns 3 and 9, di, are the num-
ber of children who suppressed the phonological process
(normalized) for control and treatment processes respec-
tively. Columns 4 and 10, ci, are lists of the censoring
status for both groups. Columns 5 and 11, S(t), are the
cumulative survival functions for each group. These are
calculated as previously described for KM analysis. Fig-
ure 3 is a graphic of these survival functions. Because
natural process suppression is a negative outcome, as
death is for traditional survival analysis, there is no need
to invert graphs and the semantics of labels to make
them more intuitive.

The Relative Risk at Specific Intervals
The relative risk (of normalizing) at each session

(time) is:

RR   =
F(t)

F(t)
it

ic
i (10)

where i indicates individuals, c indicates controls, and t
indicates treatment. The relative prospect (risk) of nor-
malizing (see Table 5, 8th week) would be:

Table 5. A Kaplan-Meier table for suppression of phonological processes before and after Metaphon
therapy. Data are from Dean, Howell, Waters, and Reid (1995).

Control processes Treatment processes

(Case) Time ni di ci S(t) (Case) Time ni di ci S(t)

(13) 4 12 1 0 .923 (6) 5 12 1 0 .923
(6) 5 11 1 0 .846 (4) 6 11 1 0 .846
(9) 6 10 1 0 .769 (1) 7 7 1 0 .538
(2) 7 9 1 0 .692 (2) 7 7 1 0 .538

(10) 8 8 1 0 .615 (8) 7 7 1 0 .538
(1) 9 3.5 1 0 .538 (9) 7 7 1 0 .538
(3) 10 3.5 0 1 .538 (5) 9 3 1 0 .462
(4) 10 3.5 0 1 .538 (3) 10 3 0 1 .462
(5) 10 3.5 0 1 .538 (7) 10 3 0 1 .462
(7) 10 3.5 0 1 .538 (10) 10 3 0 1 .462
(8) 10 3.5 0 1 .538 (11) 10 3 0 1 .462

(11) 10 3.5 0 1 .538 (12) 10 3 0 1 .462
(12) 10 3.5 0 1 .538 (13) 10 3 0 1 .462

Figure 3. Panel A shows the cumulative survival function, S(t), for
speech delayed children. Outcomes were at the 85% level for
control and Metaphon treatment processes. Panel B shows the
hazard density function, h(t), corresponding to Panel A, from data
reported by Dean et al. (1995), as presented in Table 5.
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RR    = = = 1.47
1 – .538

1 – .6158
.462

.385
(11)

Recalling the calculation for the standard error,
application to Session 8 (time) from Table 5 gives:

z = .538 – .615

(.138)   + (.135)2 2
= = –.404–.078

.037269
(12)

With z = –.404, assuming a normal distribution and
referring to the appropriate tables, the p value is ap-
proximately .34, so the difference at this time would not
be considered significant. Although individuals in the
treatment group were about 1.5 times more likely to
normalize, this increased likelihood was not beyond
chance.

The Mantel-Cox Logrank Test
The previous test applied only to a single session or

time. The Mantel-Cox Logrank Test, most often referred
to as the Logrank Test (even though it does not involve
either ranks or logarithms), makes use of all of the avail-
able data. This test was derived from the Mantel-
Haenszel chi-square test and is so distributed. The
logrank test is the test of choice in survival analysis.
Being commonly applied, it has spawned variations for
special problems.

The logrank is a test of the hypothesis of no differ-
ences among groups (or treatments) across time (ses-
sions). Based on the same logic and distributed as the
chi-square test, it compares the number of events ob-
served with the number expected by chance were there
to be no difference among groups.

Table 6 is a reorganization of the data from Table 4
as taken from Dean et al. (1995). Column 1 is a list of the
session times. Columns 2–4 are lists of the corresponding

numbers of participant processes in both groups and the
total number who have not met the outcome criterion
and so are still at risk (of normalizing). Columns 5–7
are corresponding lists of the numbers of participant
processes that were suppressed (normalized). The last
two columns were calculated to show the number of par-
ticipant processes that would be expected for both the
treatment and the control groups were these two groups
to have no outcome (suppression, normalization) differ-
ences. The expected frequencies are calculated as the
chi-square statistic, specifically:

E   =
n

n    + n
ix

ix
i di

iy
( ) (13)

where x and y are factors.

The Mantel-Cox chi-square statistic is:

χ   = +
(O  – E )

E
t t

t

2
2 (O   – E )

E
c c

c

2

(14)

The totals figures from the bottom of Table 6 can
now be inserted:

χ   = + = .0496(7 – 6.5986)
6.5986

2
2 (6 – 6.4014)

6.4014

2

(15)

By the cumulative chi-square distribution for one
degree of freedom, there is a probability of less than .83
that the treatment outcome differed from the control
outcome. From these results, we fail to reject the null
hypothesis. We cannot say that Metaphon therapy dif-
fers from no therapy in terms of how long it takes chil-
dren with speech delay to suppress natural phonologi-
cal processes.

The Overall Relative Risk
The relative risk for all intervals is:

Table 6. The Kaplan-Meier outcome table reorganized to facilitate calculation of statistical contrasts
between groups. See text for details.

Session At Risk Suppressed Expected

Treatment Control Σ Treatment Control Σ Treatment Control
Time nit nic ni dit dic di Eit Eic

1 13 13 26 0 0 0 0 0
2 13 13 26 0 0 0 0 0
3 13 13 26 0 0 0 0 0
4 13 12 25 0 1 1  .5200  .4800
5 12 11 23 1 1 2 1.0435  .9565
6 11 10 21 1 1 2 1.0476  .9524
7 7 9 16 4 1 5 2.1875 2.8125
8 7 8 15 0 1 1  .4667  .5333
9 7 3.5 10.5 1 1 2 1.3333  .6667

10 3 3.5  6.5 0 0 0 0 0

Σ : Ot = 7 Oc = 6 Et = 6.5986 Ec = 6.4014
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RR  =
O  /Et t

O  /Ec c
(16)

Which, applied to the Metaphon data from Table 6
gives:

RR  = = = 1.28357/6.19
6/6.81

1.1309
.8811 (17)

Because it will not result in a significant chi-square
under one degree of freedom with an alpha of .05, a risk
ratio under 2 is not usually considered significant (cf.
Blossfeld & Rohwer, 1995; Norman & Streiner, 1994).
When a chi-square is not found to be significant in the
logrank test, the overall risk ratio is not normally cal-
culated. The overall risk ratio of 1.28 suggests that
Metaphon treatment can be expected to benefit about 1
out of 5 children with speech delay. This finding may be
due to chance alone.

Other Tests
Although it is the most frequently used and recom-

mended test statistic for use in both parametric and
nonparametric survival analysis, the logrank test has
limitations. The logrank test should only be applied
when the hazard rates for the factors being compared
are proportional.

One way of determining whether hazard rates are
proportional is to examine the survival plots S(t). If the
two groups of survival data do not cross each other, the
hazards are proportional. If they do cross, the assump-
tion of proportional hazards is not warranted. Referring
back to Figure 3 for Metaphon treatment, the S(t) plots
do cross, so the logrank statistic calculated assuming
proportional hazards, should not have been used.

The appropriate statistic, which does not assume
proportional hazards, is the Wilcoxon test. Collett (1994)
provided an exposition of the Wilcoxon test and the
Gehan, or generalized Wilcoxon test, for use when more
than two groups are being compared. Dawson-Saunders
and Trapp (1994) suggest a clever method to calculate
the Wilcoxon test for two independent samples. In this
approach, survival times for each group are ranked from
shortest to longest, then the t test is performed on the
ranks of survival times. The independent-groups t test is
not appropriate because survival times themselves are
usually not normally distributed. Most survival times are
extremely positively skewed. The two-sample t test for
the point biserial correlation coefficient would be more
appropriate (cf. Marascuilo & Serlin, 1988, pp. 424–427).

However, the Wilcoxon test is not appropriate if
there are censored observations. When there are cen-
sored observations, the Breslow-Gehan-Wilcoxon test or
the Petro-Petro-Wilcoxon test would be appropriate. The
Breslow-Gehan-Wilcoxon test gives greater weights to

times with more observations in the risk set. This
weighting renders it less sensitive to late events when
few participants remain in the study as compared to
the Wilcoxon or the logrank tests. Weighting by the num-
ber of observations provides an advantage when the data
set has tied observations.

Should there be a marked difference in the amount
or pattern of censoring among groups, the Breslow-
Gehan-Wilcoxon test may lead to anomalous results. The
Petro-Petro-Wilcoxon test derives weights from an esti-
mate of the survival function, and the Harrington-Fleming
family of tests allows the researcher to control the
weights for specific problems or applications. These tests
are also available in trend versions. References are Cox
and Oakes (1984), Kalbfleisch and Prentice (1980), Law-
less (1982), and Nelson (1982). All the appropriate tests
were applied to the Metaphon problem. None provided
significant results.

As with post hoc multiple comparison procedures
in the analysis of variance, the most appropriate com-
parison procedure depends on the nature of the obser-
vations. Consequently, there is no single method used
by investigators. In most circumstances, all of the meth-
ods of comparison mentioned give similar results.

Adjusting for Covariates
Because the tests discussed are based on the chi-

square test, the problem of covariation is readily
handled. For example, to discover whether specific types
of natural phonological processes had differential effects
on survival times in the Metaphon study, the researcher
could divide the groups into strata according to the pro-
cesses of interest, then expand the chi-square table ac-
cordingly. A disadvantage is that the sample size for each
cell drops accordingly. In the Metaphon study, this is
not possible because the number of outcomes is already
very small. A second disadvantage is that there is no
way to estimate the magnitude of the effect. A third dis-
advantage is that to form strata, continuous variables
may have to be divided into discrete factors. In doing so,
power and sensitivity are lost.

Some equivalent to an analysis of covariance for
survival data is needed so that continuous data can be
treated as continuous and can handle any number of
covariates, and also so an estimate of the magnitude of
differences can be determined. This is possible, if the
hazard rates are proportional, through use of the Cox
proportional hazards model.

The (Semiparametric) Cox Proportional
Hazards Model

A basic model employed in the analysis of the sur-
vival data is the proportional hazard model proposed by
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Cox (1972). Although this model assumes no particular
probability distribution, it does assume proportional
hazards between groups. The hazard of normalization,
at any given time for an individual in one group, is pro-
portional to the hazard at that time for a similar indi-
vidual in the other group. The Cox model is considered
semiparametric. Its use follows the principles for para-
metric model determination. Introductions to the Cox
model are in Christensen (1987) and Harris and Albert
(1991).

The key to understanding the Cox model is the re-
alization that once the hazards h(t) are found to be pro-
portional, their ratio can be considered a constant. For
any time t:

=  c
h  (t)i

h  (t)j
(18)

where i and j are individuals.

The constant c depends upon the explanatory vari-
ables, but not on time, which is partialled out. This
makes the Cox model ideal when the focus of research
is on the relationship between explanatory variables,
but not applicable when the focus is on the dependence
of the hazard on time. The Cox model is appropriate for
most efficacy study comparisons, but inappropriate for
many questions about development. For example, if one
suspects that the early development of /s/ with distor-
tions disposes an individual to retain residual /s/ distor-
tions, the Cox model would not be appropriate. In the
Cox model, time retains an ordinal quality but loses ra-
tio scaling.

Parametric Models
If the number of outcomes in a study is large enough,

it is desirable to model survival data parametrically. A
first step is to determine the distribution, then to model
factors and variates. Not only are the parameters of in-
trinsic interest, but precision can be increased by using
parametric models (Allison, 1984; Blossfeld, Hammerle,
& Mayer, 1986; Carroll, 1982; Kalbfleisch et al., 1980;
Miller, 1981; Teachman, 1983). All recent releases of
major statistical packages contain routines for survival
analysis (e.g., Minitab, 1997; SAS/STAT, 1997; BMDP,
1997a, 1997b).

Clinical Judgment or Probability
Estimation?

At present, outcome prediction usually relies on a
clinician’s intuitions and experience, informed by objec-
tive test results, sometimes aided by diagnostic therapy
(Winitz, 1984). Suppose that, after appropriate assessment

procedures, the best judgment of an experienced speech
clinician was in disagreement with results from a sound
survival analytic study. What course of action should be
followed? One based upon clinical experience or one
based upon actuarial research?

Because of the huge number of variables that would
be required to construct faithful actuarial predictions,
expert clinical judgment may be more trustworthy. How-
ever, clinicians may disagree. Meehl (1958) concluded
that, “Both theoretical and empirical considerations
suggest that we would be well advised to concentrate
effort on improving our actuarial techniques rather than
on the calibration of each clinician for each of a large
number of different prediction problems” (p. 505).

In a review of 65 articles contrasting the judgments
of physicians with analytical and actuarial approaches
to the same prediction problems, clinical judgment was
found to be less accurate than alternative actuarial ap-
proaches (Dawson, 1993). Survival analysis can sum-
marize, contrast, and present clinical outcome experi-
ence in explicit terms not previously available to speech
and language clinicians.
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