Alexander Disease Research Bibliography
(updated February 28, 2019)

Recently added:

[concise review of clinical genetics]

[editorial discussing the two new iPS cell papers, Li et al. and Jones et al.]

prepared by Albee Messing
Acta Neuropathologica Communications 6, 112
[putative pathogenic variant in the minor isoform, GFAP-delta]

Neurologia 33, 526-533 [review]

2018

Brain & Development 41, 195-200

Nature Methods 15, 693-+

European Journal of Neurology 25, e105-e106

Cell Stem Cell 23, 239-251

European Journal of Medical Genetics (in press)

Neurology: Genetics 4, e248 [full text]
Brain & Development 40, 587-591

Neurology 91, e396-e397

Journal of Voice (in press) (variant not specified, nor confirmed as pathogenic)

Annals of the Academy of Medicine, Singapore 47, 191-193 [full text]

Nature Communications 9, 1899 [full text]

Brain Pathology 28, 388-398 [review]

Brain & Development 40, 330-333

Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease.
Annals of Neurology 83, 27-39 [first real prospect for treatment] [full text]

Pediatric Neonatology 59, 624-627

Boczek NJ, Sigafos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. Clinical Case Reports. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

prepared by Albee Messing

prepared by Albee Messing

2016

Alfke H, Schimrigk S. (2016). Tumor-mimicking brainstem lesion in an adult with Alexander disease. Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren 188, 869-870 [no genetic diagnosis given, although it says there was one]

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yalçinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. Noropsikiyatri Arsivi-Archives of Neuropsychiatry 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

prepared by Albee Messing

2015

prepared by Albee Messing
European Journal of Neurology 22, 552-552
[meeting abstract - onset at 71 years, novel mutation]

Nature Communications 6, 6:8966 | DOI: 10.1038/ncomms9966
[full text]

Journal of the Neurological Sciences 357, 319-321

eNeuro DOI: 10.1523/ENEURO.0080-15.2015
[full text]

PLoS One 10, e0138132

Acta Neuropathologica 130, 469-486

European Journal of Medical Genetics 58, 466-70
[no deletions or duplications found]

Clinical Neuropathology 34, 298-302

Clinical Neuropathology 34, 207-214

prepared by Albee Messing

2014

2013

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. Journal of Neuroscience 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

preparred by Albee Messing

Snider NT, Park H, Omary MB. (2013). **A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization.** *Journal of Biological Chemistry* 288, 31329-37 *(includes comparison of mutant keratin and GFAP)*

Wada Y, Yanagihara C, Nishimura Y, Namekawa M. (2013). **Familial adult-onset Alexander disease with a novel mutation (D78N) in the glial fibrillary acidic protein gene with unusual bilateral basal ganglia involvement.** *Journal of the Neurological Sciences* 331, 161-164

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). **Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant.** *Orphanet Journal of Rare Diseases* 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

Jany, P.L., Hagemann, T.L., and Messing, A. **GFAP expression as an indicator of disease severity in mouse models of Alexander disease.** *ASN Neuro* 5:art:e00109.doi:10.1042/AN20130003 [link to full article and podcast]

prepared by Albee Messing

2012

prepared by Albee Messing

prepared by Albee Messing

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Experimental Cell Research 317, 2252-66

prepared by Albee Messing

prepared by Albee Messing
2010

prepared by Albee Messing

Glia 58, 1228-1234

Experimental Cell Research 316, 2152-65

2009

Rinsho Shinkeigaku 49, 358-363

Clinical Nuclear Medicine 34, 931-933

[mutation and other clinical findings reported by Hida et al. 2012]

Pediatric Blood & Cancer 34, 931-933

Neuroradiology 10, 669-675

Human Molecular Genetics 18, 1190-1199 [link to full article]

Experimental Cell Research 315, 1260-1272

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. Journal of Clinical Investigation 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

prepared by Albee Messing

prepared by Albee Messing

2007

Acta Neuropathologica 114, 543-545

Experimental Cell Research 313, 2766-2779

Lancet Neurology 6, 562-570

Journal of Neurology 254, 1278-1280

Experimental Cell Research 313, 2077-2087 [review] [full text]

Glia 55, 617-31

Journal of Human Genetics 52, 362-9

Neurology 68, 1322-3

2006

Neuropediatrics 37:v1112 (abstract)

[Provides additional clinical information on E207K patient initially reported in Van der Knaap, et al, 2005]

[age of onset for this patient would be considered "infantile" according to our classification]

American Journal of Human Genetics 79, 197-213 [link to full article](#)

Neurology 66, 494-8

Neurology 66, 468-9 [editorial]

Brain & Development 28, 131-3 [not really the first, see Brenner et al, 2001 patient # 2]

Human Genetics 119, 137-44

American Journal of Pathology 168, 888-97

Brain & Development 28, 60-2

2005

Annals of Neurology 58, 813-4

Neuropediatrics 36, 319-23

prepared by Albee Messing

2004

prepared by Albee Messing

2003

prepared by Albee Messing

Monatsschrift fur Kinderheilkunde 151, 311-314

Brain & Development 25, 116-121

Pediatric Radiology 33, 47-49

[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

Lancet Neurology 2, 75

Annals of Neurology 53, 118-120

2002

Brain & Development 24, 723-726

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

Annals of Neurology 52, 779-785

Journal of Neurogenetics 16, 175-179

prepared by Albee Messing
Neurology 58, 1541-1543
[see Sawaishi et al., 1999, for more clinical detail on this patient]

Journal of Child Neurology 17, 227-230

Neurology 58, 1494 - 1500

International Journal of Developmental Neuroscience 20, 259-268

International Journal of Developmental Neuroscience 20, 391-394

Journal of the Neurological Sciences 195, 71-76

2001

Nature Genetics 27, 117-120 [first description of genetics] [link to full article]

Nature Genetics 27, 10-11

Neuroscience Letters 312, 71-74

prepared by Albee Messing

2000

prepared by Albee Messing

1999

prepared by Albee Messing
1998

1997

1996

prepared by Albee Messing

1995

1994

1993

31

prepared by Albee Messing
American Journal of Pathology 143, 487-495

Journal of Child Neurology 8, 134-144

Developmental Medicine & Child Neurology 35, 732-736

1992

Pediatric Neurosurgery 18, 134-138
[see Messing et al., 2011, for genetics]

Neurology 42, 1733-1735

Journal of Child Neurology 7, 168-171

Iwaki A, Iwaki T, Goldman JE, Ogomori K, Tateishi J, Sakaki Y. (1992). Accumulation of alpha B-crystallin in brains of patients with Alexander's disease is not due to an abnormality of the 5'-flanking and coding sequence of the genomic DNA.
Neuroscience Letters 140, 89-92

Patologia Polska 43, 193-195

Acta Neuropathologica 84, 322-327

1991

prepared by Albee Messing
Clinical Neuropathology 10, 122-126

Neuroradiology 33, 438-440

American Journal of Pathology 139, 933-938

Radiology 181, 173-181
[Included two Alexander disease patients]

American Journal of Medical Genetics 39, 226-227

Biochemical and Biophysical Research Communications 179, 1030-1035

Veterinary Pathology 28, 536-538

Immunoelectron microscopy with colloidal gold. American Journal of Pathology 138, 875-885

FEBS Lett 294:133-6

1990

prepared by Albee Messing
Journal of Histochemistry and Cytochemistry 38, 103-109

Journal of Child Neurology 5, 253-258

Journal of Child Neurology 5, 259-260

Journal of Child Neurology 5, 248-252

Wardinsky TD, Weinberger E, Pagon RA, Clareng SK, Thuline HC. (1990). Partial deletion of the long arm of chromosome 11 [del(11)(q23.3----qter)] with abnormal white matter [see comments].
American Journal of Medical Genetics 35, 60-63

1989

Cell 57, 71-78

American Journal of Anatomy 185, 335-341

1988

American Journal of Pathology 130, 569-578

Pediatric Radiology 18, 227-228

Annals of Neurology 24, 302 [really no evidence]
Journal of Pathology 155, 9-15

Neurology 38, 152-154

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier.
Journal of the American Veterinary Medical Association 190, 1004-1006

Rinsho Shinkeigaku - Clinical Neurology 27, 1141-1144

1986

Acta Neuropathologica 71, 163-166

1985

Brain 108, 367-385

Acta Neuropathologica 67, 163-166

1984

Annals of Neurology 15, 605-607

1983

1982

1981

Brain Research 210, 419-425

Developmental Medicine & Child Neurology 23, 660-661

1980

Acta Neurologica 2, 1-9

Italian Journal of Neurological Sciences 1, 131-138

Neuroradiology 20, 103-106

Rivista di Neurobiologia 26, 357-364

Acta Neuropathologica 50, 237-240

1979

Journal of Neurology, Neurosurgery & Psychiatry 42, 619-624

Acta Neuropathologica 45, 133-140

Acta Neuropathologica 47, 81-84
1977

1976

1974

1973

1972

1970

prepared by Albee Messing

1968

1967

1966

1964

[Sixth case, first use of the name "Alexander's disease."]

1962

1959

1953

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord. *Ciencia (México)* 12, 71-74

1949

[First description of a child with Alexander disease]

1898

prepared by Albee Messing