Alexander Disease Research Bibliography
(updated October 16, 2019)

Recently added:

2019

prepared by Albee Messing

2018

prepared by Albee Messing

Atypical Alexander disease with dystonia, retinopathy, and a brain mass mimicking astrocytoma.

Neurology: Genetics 4, e248 [full text]

Brain & Development 40, 587-591

Neurology 91, e396-e397

Journal of Voice (in press) (variant not specified, nor confirmed as pathogenic)

Annals of the Academy of Medicine, Singapore 47, 191-193 [full text]

Nature Communications 9, 1899 [full text]

Brain Pathology 28, 388-398 [review]

Brain & Development 40, 330-333

Antisense suppression of glial fibrillary acidic protein as a treatment for Alexander disease.

Annals of Neurology 83, 27-39 [first real prospect for treatment] [full text]

Pediatric Neonatology 59, 624-627

prepared by Albee Messing
2017

Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. *Clinical Case Reports*. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]
Neurology India 65, 887-889

Human Genome Variation 4, 17028 [full text]

Zhonghua Er Ke Za Zhi 55, 504-508

Frontiers in Neurology 8:255

Journal of Child Neurology 32:184-187

European Neurology 77:296-302

BMJ Case Reports doi: 10.1136/bcr-2016-218484 [genetic results not provided in text, but personal communication from author as N386S]

Acta Neuropathologica Communications 5, 27

prepared by Albee Messing

2016

Alfke H, Schimrigk S. (2016). *Tumor-mimicking brainstem lesion in an adult with Alexander disease.* *Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren* 188, 869-870 [no genetic diagnosis given, although it says there was one]

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yalçinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. *Noropsikiyatri Arsivi-Arsvi- Archives of Neuropsychiatry* 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

prepared by Albee Messing

2015

onset leukodystrophy - a possible Alexander's disease.

European Journal of Neurology 22, 552-552

[meeting abstract - onset at 71 years, novel mutation]

Nature Communications 6, 6:8966 | DOI: 10.1038/ncomms9966 [full text]

Journal of the Neurological Sciences 357, 319-321

eNeuro DOI: 10.1523/ENEURO.0080-15.2015 [full text]

PLoS One 10, e0138132

Acta Neuropathologica 130, 469-486

European Journal of Medical Genetics 58, 466-70 [no deletions or duplications found]

Clinical Neuropathology 34, 298-302

Clinical Neuropathology 34, 207-214

prepared by Albee Messing

2014

2013

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. Journal of Neuroscience 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

prepared by Albee Messing
Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. Journal of Biological Chemistry 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. Orphanet Journal of Rare Diseases 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

Jany, P.L., Hagemann, T.L., and Messing, A. GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN Neuro 5:art:e00109.doi:10.1042/AN20130003 [link to full article and podcast]

2012

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Experimental Cell Research 317, 2252-66

2010

2009

[mutation and other clinical findings reported by Hida et al. 2012]

prepared by Albee Messing

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. *Journal of Clinical Investigation* 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

2007

2006

[age of onset for this patient would be considered "infantile" according to our classification]

prepared by Albee Messing

2005

2004

prepared by Albee Messing

2003

prepared by Albee Messing
Pediatric Radiology 33, 47-49
[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

Lancet Neurology 2, 75

Annals of Neurology 53, 118-120

2002

Brain & Development 24, 723-726
[Genetic studies reported as patient #4 in Shiroma et al., 2003]

Annals of Neurology 52, 779-785

Journal of Neurogenetics 16, 175-179

Neuropediatrics 33, 194-198

Neurology 58, 1541-1543
[see Sawaishi et al., 1999, for more clinical detail on this patient]

Journal of Child Neurology 17, 227-230

prepared by Albee Messing

2001

2000

1999

prepared by Albee Messing
Acta Neurologica Scandinavica 99, 158-165

Journal of Child Neurology 14, 325-329
[see Li et al. 2005 for genetics]

Herndon RM. (1999). *Is Alexander's disease a nosologic entity or a common pathologic pattern of diverse etiology?*
Journal of Child Neurology 14, 275-276

Movement Disorders 14, 689-693

Archives of Ophthalmology 117, 265-267

Journal of the Neurological Sciences 165, 116-120

Nature Genetics 21, 260-261
[likely mis-diagnosis]

Neurology India 47, 333-335.

1998

Brain Research 787, 15-18

American Journal of Pathology 152, 391-398

prepared by Albee Messing
Pediatric Neurology 18, 67-70

1997

Neuroscience Letters 231, 79-82

Neurology 48, 552

Neurology 48, 552

Bone Marrow Transplantation 20: 247-249

1996

Pediatric Pathology & Laboratory Medicine 16, 327-343

Acta Neuropathologica 91, 200-204

Clinical Neuropathology 15, 13-16

1995

1994

1993

prepared by Albee Messing
1992

[see Messing et al., 2011, for genetics]

1991

1990

prepared by Albee Messing
Wardinsky TD, Weinberger E, Pagon RA, Clareen SK, Thuline HC. (1990). Partial deletion of the long arm of chromosome 11 \([\text{del}(11)(q23.3----qter)]\) with abnormal white matter [see comments].
American Journal of Medical Genetics 35, 60-63

1989

Cell 57, 71-78

American Journal of Anatomy 185, 335-341

1988

American Journal of Pathology 130, 569-578

Pediatric Radiology 18, 227-228

Annals of Neurology 24, 302 [really no evidence]

Journal of Pathology 155, 9-15

Neurology 38, 152-154

1987

prepared by Albee Messing
Sorjonen DC, Cox NR, Kwapien RP. (1987). *Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier.*
Journal of the American Veterinary Medical Association 190, 1004-1006

Rinsho Shinkeigaku - Clinical Neurology 27, 1141-1144

1986

Acta Neuropathologica 71, 163-166

1985

Brain 108, 367-385

Acta Neuropathologica 67, 163-166

1984

Annals of Neurology 15, 605-607

Revue Neurologique 140, 179-189

No to Hattatsu [Brain & Development] 16, 76-78

Journal of Neurology, Neurosurgery, and Psychiatry 47, 399-403

1983

Morphologiai Es Igazsagugyi Orvosi Szemle 23, 169-175

prepared by Albee Messing

1982

1981

1980

1979

1977

1976

1974

Archives of Pathology & Laboratory Medicine 98, 379-385

1973

1972

1970

1968

1967

prepared by Albee Messing
1966

Shinkei Kenkyu No Shimpo - Advances in Neurological Sciences 10, 716-720

1964

Archives of Neurology 11, 414-422
[Sixth case, first use of the name "Alexander's disease."]

Acta Neuropathologica 4, 212-217

1962

Acta Neuropathologica 2, 126-143

1959

Journal of Neuropathology and Experimental Neurology 18, 359-383

1953

Brain 76, 215-228

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord.
Ciencia (México) 12, 71-74

1949

preparing by Albee Messing

[First description of a child with Alexander disease]

1898

[first description of what later came to be known as “Rosenthal fibers”]