Alexander Disease Research Bibliography
(updated August 20, 2019)

Recently added:

2019

prepared by Albee Messing
2018

Nature Methods 15, 693-+

prepared by Albee Messing
Nature Communications 9, 1899 [full text]

Brain Pathology 28, 388-398 [review]

Brain & Development 40, 330-333

Annals of Neurology 83, 27-39 [first real prospect for treatment] [full text]

Pediatric Neonatology 59, 624-627

Neurologia 33, 526-533 (review)

2017

Neurology: Clinical Practice 7, 425-429

Neurology: Clinical Practice 7, 523-526

Neuropediatrics 49, 118-122

prepared by Albee Messing

Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. Clinical Case Reports. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

2016

Alfke H, Schimrigk S. (2016). Tumor-mimicking brainstem lesion in an adult with Alexander disease. Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren 188, 869-870 [no genetic diagnosis given, although it says there was one]
BMC Neurology 16, 211

Noropsikiyatri Arsivi-Archives of Neuropsychiatry 53, 169-172
[Note that the mutation is reported incorrectly, and should be M415I]

Acta Neuropathologica Communications 4, 69

Journal of Proteome Research 55, 2265-2282

Journal of Neurology 263, 821-822

Journal of Neuroscience 36, 1445-1455

Neurological Sciences 37, 973-977

Journal of Child Neurology 31, 869-72

Neurological Sciences 37, 143-145 [corresponds to S398F change in the protein sequence]

prepared by Albee Messing

2015

Ahmad O, Rowe DB. (2015). *Adult-onset Alexander’s disease mimicking degenerative disease*. *Practical Neurology* 15, 393-395 [one of the patients with onset at 79 years]

2014

prepared by Albee Messing

2013

prepared by Albee Messing

Hagemann TL, Paylor R, Messing A. (2013). *Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease*. *Journal of Neuroscience* 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). *A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization*. *Journal of Biological Chemistry* 288, 31329-37 (includes comparison of mutant keratin and GFAP)

onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant.

Orphanet Journal of Rare Diseases 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

Jany, P.L., Hagemann, T.L., and Messing, A. GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN Neuro 5:art:e00109.doi:10.1042/AN20130003 [link to full article and podcast]

Journal of Child Neurology 28, 396-398

Journal of Inherited Metabolic Disorders Reports 9, 67-71
[one patient, initial study reported in Sechi 2010]

2012

Experimental Cell Research 318, 1844-54

American Journal of Medical Genetics Part A 158A, 2835-2842
[includes an estimate of prevalence/incidence in part of US]

Journal of Neuroscience 32, 10507-10515 [link to full article]

Journal of Neurology 259, 2234-2236 [imaging findings reported by Ito et al. 2009]

Human Mutation 11:1141-1148
[first example of an intronic mutation that affects splicing]

prepared by Albee Messing
2011

[proposes new classification system, with updated survival statistics]

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). *Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability*. *Experimental Cell Research* 317, 2252-66

[first Drosophila model of the disease] [link to full article]

[no genetic confirmation of diagnosis, however]

2010

Messing A, Daniels CM, Hagemann TL. (2010). Strategies for treatment in Alexander disease. Neurotherapeutics 7, 507-515 [review] [link to full article]

prepared by Albee Messing

2009

[mutation and other clinical findings reported by Hida et al. 2012]

its MRI features and a GFAP allele carrying both the p.Arg79His mutation and the p.Glu223Gln coding variant.
Journal of Neurology 256, 679-682

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. *Journal of Clinical Investigation* 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

2007

prepared by Albee Messing

2006

prepared by Albee Messing

2005

2004

prepared by Albee Messing

2003

Archives of Neurology 60, 1307-1312

Journal of Neurology, Neurosurgery & Psychiatry 74, 807-810

Journal of Neurology 250, 300-306

Monatsschrift fur Kinderheilkunde 151, 311-314]

Brain & Development 25, 116-121

Pediatric Radiology 33, 47-49

[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

Lancet Neurology 2, 75

Annals of Neurology 53, 118-120

2002

Brain & Development 24, 723-726

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

2001

2000

1999

prepared by Albee Messing

1998

1997

prepared by Albee Messing

1996

1995

1994

1993

prepared by Albee Messing

1992

[see Messing et al., 2011, for genetics]

1991

prepared by Albee Messing

1990

1989

1988

prepared by Albee Messing

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier. Journal of the American Veterinary Medical Association 190, 1004-1006

1986

1985

prepared by Albee Messing
Brain 108, 367-385

Acta Neuropathologica 67, 163-166

1984

Annals of Neurology 15, 605-607

Revue Neurologique 140, 179-189

No to Hattatsu [Brain & Development] 16, 76-78

Journal of Neurology, Neurosurgery, and Psychiatry 47, 399-403

1983

Morphologai Es Igazsagugyi Orvosi Szemle 23, 169-175

Clinical Neuropathology 2, 16-22

Nippon Hifuka Gakkai Zasshi - Japanese Journal of Dermatology 93, 1533-1535

Acta Neuropathologica 61, 36-42

1982

1981

1980

1979

prepared by Albee Messing
Acta Neuropathologica 45, 133-140

Acta Neuropathologica 47, 81-84

1977

Archives of Pathology & Laboratory Medicine 101, 655-657

1976

Journal of Neurology, Neurosurgery & Psychiatry 39, 803-809

Neurology 26, 607-614

1974

Neurology India 22, 57-64

Archives of Pathology & Laboratory Medicine 98, 379-385

1973

Neuropatologia Polska 11, 127-141

1972

Acta Neuropathologica 4, 212-217

1962

Acta Neuropathologica 2, 126-143

1959

Journal of Neuropathology and Experimental Neurology 18, 359-383

1953

Brain 76, 215-228

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord.
Ciencia (México) 12, 71-74

1949

Brain 72, 373-381
[First description of a child with Alexander disease]

1898

Bietr.Pathol.Anat. 23, 111-143
[First description of what later came to be known as “Rosenthal fibers”]