Alexander Disease Research Bibliography
(updated July 11, 2019)

Recently added:

2019

2018

prepared by Albee Messing

Sofroniew MV. (2018). Stem-Cell-Derived Astrocytes Divulge Secrets of Mutant GFAP. *Cell Stem Cell* 23, 630-631. [editorial discussing the two new iPS cell papers, Li et al. and Jones et al.]

2017

prepared by Albee Messing

Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. *Clinical Case Reports*. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

2016

Alfke H, Schimrigk S. (2016). Tumor-mimicking brainstem lesion in an adult with Alexander disease. Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren 188, 869-870 [no genetic diagnosis given, although it says there was one]
BMC Neurology 16, 211

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yağıcıkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. *Noropsikiyatri Arsivi-Archives of Neuropsychiatry* 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

Acta Neuropathologica Communications 4, 69

Journal of Proteome Research 55, 2265-2282

Journal of Neurology 263, 821-822

Journal of Neuroscience 36, 1445-1455

Neurological Sciences 37, 973-977

Journal of Child Neurology 31, 869-72

Neurological Sciences 37, 143-145 [corresponds to S398F change in the protein sequence]

2015

Ahmad O, Rowe DB. (2015). Adult-onset Alexander’s disease mimicking degenerative disease. Practical Neurology 15, 393-395 [one of the patients with onset at 79 years]

Ferreira MC, Dorboz I, Rodriguez D, Boespflug-Tanguy O. (2015). *Screening for GFAP rearrangements in a cohort of Alexander disease and undetermined leukoencephalopathy patients.* *European Journal of Medical Genetics* 58, 466-70 [no deletions or duplications found]

2014

prepared by Albee Messing

2013

prepared by Albee Messing

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. *Journal of Neuroscience* 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. *Journal of Biological Chemistry* 288, 31329-37 (includes comparison of mutant keratin and GFAP)

onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant.

Orphanet Journal of Rare Diseases 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

Journal of Neuroscience 33, 7439-7450

ASN Neuro 5:art:e00109.doi:10.1042/AN20130003 [link to full article and podcast]

Biancheri, R., Rossi, A., Ceccherini, I., Pezzella, M., Prato, G., Striano, P., and Minetti, C.
Magnetic Resonance Imaging "Tigroid Pattern" in Alexander Disease.
Neuropediatrics 44, 174-6

Brain & Development 35, 441-444

Journal of Pediatrics 162, 648

Journal of Human Genetics 58, 183-188

Journal of Proteome Research 12, 719-728

Glia 61, 210-224 [studies involved mouse model expressing R239H mutant]准备的Albee Messing

2012

Hagemann TL, Jobe EM, Messing A. (2012) Genetic ablation of Nrf2/antioxidant response pathway in Alexander disease mice reduces hippocampal gliosis but does not impact survival. PLoS ONE 7, e37304 [link to full article]

prepared by Albee Messing
2011

Prust M et al. (2011). **GFAP mutations, age of onset, and clinical sub-types in Alexander disease**. *Neurology* 77, 1287-94 [proposes new classification system, with updated survival statistics]

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). **Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability**. *Experimental Cell Research* 317, 2252-66

prepared by Albee Messing

2010

prepared by Albee Messing

2009

prepared by Albee Messing
its MRI features and a GFAP allele carrying both the p.Arg79His mutation and the p.Glu223Gln coding variant.

Journal of Neurology 256, 679-682

Journal of Clinical Investigation 119, 1814-1824
[contains review of GFAP in blood or CSF as a potential biomarker for various diseases]
[link to full article]

2008

2007

2006

[T] [Provides additional clinical information on E207K patient initially reported in Van der Knaap, et al, 2005]

[age of onset for this patient would be considered "infantile" according to our classification]

prepared by Albee Messing

2005

2004

prepared by Albee Messing

2003

2002

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

prepared by Albee Messing

2001

prepared by Albee Messing

2000

Head MW, Goldman JE. (2000). *Small heat shock proteins, the cytoskeleton, and inclusion body formation.* *Neuropathology & Applied Neurobiology* 26, 304-312

1999

prepared by Albee Messing
Archives of Ophthalmology 117, 265-267

Journal of the Neurological Sciences 165, 116-120

Nature Genetics 21, 260-261 [likely mis-diagnosis]

Neurology India 47, 333-335.

1998

Brain Research 787, 15-18

American Journal of Pathology 152, 391-398

Pediatric Neurology 18, 67-70

1997

Neuroscience Letters 231, 79-82

Neurology 48, 552

Neurology 48, 552
Bone Marrow Transplantation 20: 247-249

1996

Pediatric Pathology & Laboratory Medicine 16, 327-343

Acta Neuropathologica 91, 200-204

Clinical Neuropathology 15, 13-16

1995

Biotechnic & Histochemistry 70, 285-29

Neurology 45, 2266-2271 [see Messing et al., 2011, for genetics]

1994

Clinical Neuropathology 13, 31-38

1993

prepared by Albee Messing
American Journal of Pathology 143, 1743-1753

Revue Neurologique 149, 781-787

Journal of Neurology, Neurosurgery, and Psychiatry 56, 977-981

American Journal of Pathology 143, 487-495

Journal of Child Neurology 8, 134-144

Developmental Medicine & Child Neurology 35, 732-736

1992

Pediatric Neurosurgery 18, 134-138
[see Messing et al., 2011, for genetics]

Neurology 42, 1733-1735

Journal of Child Neurology 7, 168-171
Iwaki A, Iwaki T, Goldman JE, Ogomori K, Tateishi J, Sakaki Y. (1992). Accumulation of alpha B-crystallin in brains of patients with Alexander's disease is not due to an abnormality of the 5'-flanking and coding sequence of the genomic DNA.
Neuroscience Letters 140, 89-92

Patologia Polska 43, 193-195

Acta Neuropathologica 84, 322-327

1991

Clinical Neuropathology 10, 122-126

Neuroradiology 33, 438-440

American Journal of Pathology 139, 933-938

Radiology 181, 173-181
[Included two Alexander disease patients]

American Journal of Medical Genetics 39, 226-227

Biochemical and Biophysical Research Communications 179, 1030-1035

Veterinary Pathology 28, 536-538

1990

1989

1988

prepared by Albee Messing

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier. Journal of the American Veterinary Medical Association 190, 1004-1006

1986

1985

prepared by Albee Messing
Brain 108, 367-385

Acta Neuropathologica 67, 163-166

1984

Annals of Neurology 15, 605-607

Revue Neurologique 140, 179-189

No to Hattatsu [Brain & Development] 16, 76-78

Journal of Neurology, Neurosurgery, and Psychiatry 47, 399-403

1983

Morphologiai Es Igazsagugyi Orvosi Szemle 23, 169-175

Clinical Neuropathology 2, 16-22

Nippon Hifuka Gakkai Zasshi - Japanese Journal of Dermatology 93, 1533-1535

Acta Neuropathologica 61, 36-42

1982

prepared by Albee Messing

1981

1980

1979

prepared by Albee Messing
Acta Neuropathologica 45, 133-140

Acta Neuropathologica 47, 81-84

1977

Archives of Pathology & Laboratory Medicine 101, 655-657

1976

Journal of Neurology, Neurosurgery & Psychiatry 39, 803-809

Neurology 26, 607-614

1974

Neurology India 22, 57-64

Archives of Pathology & Laboratory Medicine 98, 379-385

1973

Neuropatologia Polska 11, 127-141

1972

Missouri Medicine 69, 23-25

1970

Journal of Neuropathology and Experimental Neurology 29, 524-551

Archives of Pathology & Laboratory Medicine 89, 321-328

1968

Neurology 18, 543-549

Archives of Neurology 19, 494-502 [see Messing et al., 2012, for genetics]

1967

Shinkei Kenkyu No Shimpo 11, 765-774

1966

Shinkei Kenkyu No Shimpo - Advances in Neurological Sciences 10, 716-720

1964

Archives of Neurology 11, 414-422
 [Sixth case, first use of the name "Alexander's disease."

prepared by Albee Messing
Acta Neuropathologica 4, 212-217

1962

Acta Neuropathologica 2, 126-143

1959

Journal of Neuropathology and Experimental Neurology 18, 359-383

1953

Brain 76, 215-228

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord.
Ciencia (México) 12, 71-74

1949

Brain 72, 373-381
[First description of a child with Alexander disease]

1898

Bietr.Pathol.Anat. 23, 111-143 [first description of what later came to be known as “Rosenthal fibers”]

prepared by Albee Messing