Alexander Disease Research Bibliography
(updated May 15, 2019)

Recently added:

Neuropsychological features of adult form of Alexander disease.
Journal of the Neurological Sciences 401, 87-89

Cabrera-Galván JJ, Martínez-Martin MS, Déniz-García D, Araujo-Ruano E, Travieso-Aja MDM.
(2019).
Adult-onset Alexander disease with a heterozygous D128N GFAP mutation: a pathological study.
Histology and Histopathology (in press)

[concise review of clinical genetics]

Case Rep Med. 2019, 2986538

Neurocase. DOI: 10.1080/13554794.13552019.11580749

Indian Journal of Pediatrics (in press)

2018

Neuropediatrics 49, 256-261

Cell Stem Cell 23, 630-631.
[editorial discussing the two new iPS cell papers, Li et al. and Jones et al.]

prepared by Albee Messing

prepared by Albee Messing

prepared by Albee Messing
Annals of Neurology 83, 27-39
[first real prospect for treatment] [full text]

2017

prepared by Albee Messing
variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic.

Clinical Case Reports. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

Neurology India 65, 887-889

Human Genome Variation 4, 17028 [full text]

Zhonghua Er Ke Za Zhi 55, 504-508

Frontiers in Neurology 8:255

Journal of Child Neurology 32:184-187

European Neurology 77:296-302

BMJ Case Reports doi: 10.1136/bcr-2016-218484 [genetic results not provided in text, but personal communication from author as N386S]

Clinical Neurology and Neurosurgery 157, 31-33

2016

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yalçinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. *Noropsikiyatri Arsivi-Archives of Neuropsychiatry* 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

2015

Ahmad O, Rowe DB. (2015). *Adult-onset Alexander’s disease mimicking degenerative disease.* Practical Neurology 15, 393-395 [one of the patients with onset at 79 years]

Ferreira MC, Dorboz I, Rodriguez D, Boespflug-Tanguy O. (2015). *Screening for GFAP rearrangements in a cohort of Alexander disease and undetermined leukencephalopathy patients.* European Journal of Medical Genetics 58, 466-70 [no deletions or duplications found]

Clinical Neuropathology 34, 207-214

Glia 63, 2285-97

Journal of the Neurological Sciences 354, 131-132

European Journal of Human Genetics 23:72-78 [the first nonsense mutation reported, predicting expression of a severely shortened protein]

2014

Journal of Clinical & Diagnostic Research 8, Pd03-04 [full text]

Neurology 83, e197-198

Arquivos de Neuro-Psiiquiatria 72, 897-898

Brain Research 1582, 211-219

prepared by Albee Messing
Journal of Neuroscience 34, 6448-6558 (* joint first authors)*

Neurology 82, 49-56

APMIS 122, 76-80

Parkinsonism & Related Disorders 20, 241-2

2013

Iranian Journal of Pediatrics 23, 481-484 [link to full article]

Journal of Neuroscience 33, 18698-18706
[describes an entirely new phenotype not previously known to be part of the disease]

Journal of Human Genetics 58, 635-638

prepared by Albee Messing

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. *Journal of Biological Chemistry* 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. *Orphanet Journal of Rare Diseases* 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

prepared by Albee Messing

2012

LaPash Daniels CM, Austin EV, Rockney DE, Jacka EM, Hagemann TL, Johnson DA, Johnson JA, Messing A. (2012) **Beneficial effects of Nrf2 overexpression in a mouse model of Alexander disease.** *Journal of Neuroscience* 32, 10507-10515 [link to full article]

Kessell, A.E., Finnie, J.W., Manavis, J., Cheetham, G.D., and Blumbergs, P.C. (2012). **A Rosenthal Fiber Encephalomyelopathy Resembling Alexander’s Disease in 3 Sheep.** *Veterinary Pathology* 49, 248-254 [no GFAP mutations were detected]

Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE. (2012). **Alexander disease.** *Journal of Neuroscience* 32, 5017-5023 [review] [link to full article]

Nam TS, Choi KH, Lee SH, Park MS, Kim JT, Choi SM, Kim BC, Kim MK, Cho KH. (2012). **Adult-onset Alexander disease mimicking neuromyelitis optica.** *Multiple Sclerosis Journal* 18, 546-546 [but may be mis-diagnosis, since D295N is a known polymorphism, and not proven as disease-causing]

2011

[proposes new classification system, with updated survival statistics]

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. Experimental Cell Research 317, 2252-66

Journal of Neurology 258, 1998-2008 [first population-based estimate of prevalence]

Journal of Child Neurology 26, 356-60

Journal of Neuroscience 31, 2868-2877 [first Drosophila model of the disease] [link to full article]

Journal of Neuroophthalmology 31, 155-9 [no genetic confirmation of diagnosis, however]

Veterinary Pathology 49, 248-254

Journal of Neurology 258, 938-40

Journal of Neurology 258, 935-7

Brain & Development 33, 604-7

Acta Neurologica Scandinavia 124, 104-108

The Clinical Neuropsychologist 25, 1266-1277
2010

prepared by Albee Messing
Glia 58, 1228-1234

Experimental Cell Research 316, 2152-65

2009

Rinsho Shinkeigaku 49, 358-363

Clinical Nuclear Medicine 34, 931-933
[mutation and other clinical findings reported by Hida et al. 2012]

Pediatric Blood & Cancer 34, 931-933

Neuroradiology 10, 669-675

Human Molecular Genetics 18, 1190-1199 [link to full article]

Experimental Cell Research 315, 1260-1272

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. *Journal of Clinical Investigation* 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

2007

prepared by Albee Messing

2006

prepared by Albee Messing
pathway involving filament aggregation and the association of alphaB-crystallin and HSP27.

American Journal of Human Genetics 79, 197-213 [link to full article]

Neurology 66, 494-8

Neurology 66, 468-9 [editorial]

Brain & Development 28, 131-3 [not really the first, see Brenner et al, 2001 patient # 2]

Human Genetics 119, 137-44

American Journal of Pathology 168, 888-97

Brain & Development 28, 60-2

2005

Annals of Neurology 58, 813-4

Neuropediatrics 36, 319-23

preparing by Albee Messing

Journal of Cell Science 118, 2057-2065 [link to full article]

2004

2003

[same patients for whom clinical/genetic data reported in Meins et al., 2002]

2002

prepared by Albee Messing
Neuropediatrics 33, 194-198

Neurology 58, 1541-1543

[see Sawaishi et al., 1999, for more clinical detail on this patient]

Journal of Child Neurology 17, 227-230

Neurology 58, 1494 - 1500

International Journal of Developmental Neuroscience 20, 259-268

International Journal of Developmental Neuroscience 20, 391-394

Journal of the Neurological Sciences 195, 71-76

2001

Nature Genetics 27, 117-120 [first description of genetics] [link to full article]

Nature Genetics 27, 10-11

Neuroscience Letters 312, 71-74
Journal of Neuropathology and Experimental Neurology 60, 563-573 [review]

American Journal of Human Genetics 69, 1134-1140. [see also 69, 1413]

Journal of Human Genetics 46, 579-582

Journal of Neurochemistry 76, 730-736

Journal of Neuropathology and Experimental Neurology 60, 553

Journal of Neuropathology and Experimental Neurology 60 (abstract)

American Journal of Neuroradiology 22, 541-552 [link to full article]

2000

Epilepsia 41, 628-630

Head MW, Goldman JE. (2000). Small heat shock proteins, the cytoskeleton, and inclusion body formation.
Neuropathology & Applied Neurobiology 26, 304-312

prepared by Albee Messing
Neuropediatrics 31, 86-92

1999

prepared by Albee Messing
1998

1997

1996

1995

1994

1993

American Journal of Pathology 143, 487-495

Journal of Child Neurology 8, 134-144

Developmental Medicine & Child Neurology 35, 732-736

1992

Pediatric Neurosurgery 18, 134-138
[see Messing et al., 2011, for genetics]

Neurology 42, 1733-1735

Journal of Child Neurology 7, 168-171

Iwaki A, Iwaki T, Goldman JE, Ogomori K, Tateishi J, Sakaki Y. (1992). Accumulation of alpha B-crystallin in brains of patients with Alexander's disease is not due to an abnormality of the 5'-flanking and coding sequence of the genomic DNA.
Neuroscience Letters 140, 89-92

Patologia Polska 43, 193-195

Acta Neuropathologica 84, 322-327

1991

Clinical Neuropathology 10, 122-126

prepared by Albee Messing

[Included two Alexander disease patients]

1990

Journal of Child Neurology 5, 253-258

Journal of Child Neurology 5, 259-260

Journal of Child Neurology 5, 248-252

Wardinsky TD, Weinberger E, Pagon RA, Clarren SK, Thuline HC. (1990). Partial deletion of the long arm of chromosome 11 [del(11)(q23.3----qter)] with abnormal white matter [see comments].
American Journal of Medical Genetics 35, 60-63

1989

Cell 57, 71-78

American Journal of Anatomy 185, 335-341

1988

American Journal of Pathology 130, 569-578

Pediatric Radiology 18, 227-228

Annals of Neurology 24, 302 [really no evidence]

well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and mallory bodies in alcoholic liver disease.
Journal of Pathology 155, 9-15

Neurology 38, 152-154

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier.
Journal of the American Veterinary Medical Association 190, 1004-1006

Rinsho Shinkeigaku - Clinical Neurology 27, 1141-1144

1986

Acta Neuropathologica 71, 163-166

1985

Brain 108, 367-385

Acta Neuropathologica 67, 163-166

1984

Annals of Neurology 15, 605-607

Revue Neurologique 140, 179-189

prepared by Albee Messing

1983

1982

1981

1980

prepared by Albee Messing

1979

1977

1976

prepared by Albee Messing

1974

1973

1972

1970

1968

Neurology 18, 543-549

1967

1966

1964

[Sixth case, first use of the name "Alexander's disease."

1962

1959

1953

prepared by Albee Messing
1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord.
Ciencia (México) 12, 71-74

1949

Brain 72, 373-381
[First description of a child with Alexander disease]

1898

Bietr.Pathol.Anat. 23, 111-143 [first description of what later came to be known as “Rosenthal fibers”]