Alexander Disease Research Bibliography
(updated June 19, 2019)

Recently added:

[concise review of clinical genetics]

2018

prepared by Albee Messing
Sofroniew MV. (2018). Stem-Cell-Derived Astrocytes Divulge Secrets of Mutant GFAP. *Cell Stem Cell* 23, 630-631. [editorial discussing the two new iPS cell papers, Li et al. and Jones et al.]

prepared by Albee Messing
Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease.

Cell Stem Cell 23, 239-251

Neurology: Genetics 4, e248 [full text]

Brain & Development 40, 587-591

Neurology 91, e396-e397

Journal of Voice (in press) (variant not specified, nor confirmed as pathogenic)

Annals of the Academy of Medicine, Singapore 47, 191-193 [full text]

Nature Communications 9, 1899 [full text]

Brain Pathology 28, 388-398 [review]

Brain & Development 40, 330-333
Annals of Neurology 83, 27-39
[first real prospect for treatment] [full text]

Pediatric Neonatology 59, 624-627

Neurologia 33, 526-533 (review)

2017

Neurology: Clinical Practice 7, 425-429

Neurology: Clinical Practice 7, 523-526

Neuropediatrics 49, 118-122

Journal of Clinical Neurology 13, 426-428 [full text]

Neurologist 22, 247-248

Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). *Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic*. *Clinical Case Reports.* 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

2016

Alfke H, Schimrigk S. (2016). Tumor-mimicking brainstem lesion in an adult with Alexander disease. Rofo-Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren 188, 869-870 [no genetic diagnosis given, although it says there was one]

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yağcinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. Noropsikiyatri Arsivi-Archives of Neuropsychiatry 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

2015

prepared by Albee Messing
Tidsskr Nor Laegeforen 135, 1753-1755 [full text]

Practical Neurology 15, 393-395 [one of the patients with onset at 79 years]

European Journal of Neurology 22, 552-552
[meeting abstract - onset at 71 years, novel mutation]

Nature Communications 6, 6:8966 | DOI: 10.1038/ncomms9966 [full text]

Journal of the Neurological Sciences 357, 319-321

eNeuro DOI: 10.1523/ENEURO.0080-15.2015 [full text]

PLoS One 10, e0138132

Acta Neuropathologica 130, 469-486

European Journal of Medical Genetics 58, 466-70 [no deletions or duplications found]

2014

Scola RH, Lorenzoni PJ, Kay CSK, Werneck LC. (2014). **Adult-onset Alexander disease: could facial myokymia be a symptom?** *Arquivos de Neuro-Psiquiatria* 72, 897-898

prepared by Albee Messing
Brain Research 1582, 211-219

Journal of Neuroscience 34, 6448-6558 (* joint first authors)

Neurology 82, 49-56

APMIS 122, 76-80

Parkinsonism & Related Disorders 20, 241-2

2013

Iranian Journal of Pediatrics 23, 481-484 [link to full article]

Journal of Neuroscience 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. *Journal of Biological Chemistry* 288, 31329-37 (includes comparison of mutant keratin and GFAP)

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. *Orphanet Journal of Rare Diseases* 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

prepared by Albee Messing

2012

LaPash Daniels CM, Austin EV, Rockney DE, Jacka EM, Hagemann TL, Johnson DA, Johnson JA, Messing A. (2012) **Beneficial effects of Nrf2 overexpression in a mouse model of Alexander disease.** *Journal of Neuroscience* 32, 10507-10515 [link to full article]

Kessell, A.E., Finnie, J.W., Manavis, J., Cheetham, G.D., and Blumbergs, P.C. (2012). **A Rosenthal Fiber Encephalomyelopathy Resembling Alexander's Disease in 3 Sheep.** *Veterinary Pathology* 49, 248-254 [no GFAP mutations were detected]

Messing A, Brenner M, Feany MB, Nedergaard M, Goldman JE. (2012). **Alexander disease.** *Journal of Neuroscience* 32, 5017-5023 [review] [link to full article]

Nam TS, Choi KH, Lee SH, Park MS, Kim JT, Choi SM, Kim BC, Kim MK, Cho KH. (2012). **Adult-onset Alexander disease mimicking neuromyelitis optica.** *Multiple Sclerosis Journal* 18, 546-546 [but may be mis-diagnosis, since D295N is a known polymorphism, and not proven as disease-causing]

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability.

2010

Messing A, Daniels CM, Hagemann TL. (2010). Strategies for treatment in Alexander disease. Neurotherapeutics 7, 507-515 [review] [link to full article]

prepared by Albee Messing

2009

[mutation and other clinical findings reported by Hida et al. 2012]

prepared by Albee Messing
[contains review of GFAP in blood or CSF as a potential biomarker for various diseases]
[link to full article]

2008

prepared by Albee Messing

2007

prepared by Albee Messing
Journal of Neurology 254, 1390-1394

Acta Neuropathologica 114, 543-545

Experimental Cell Research 313, 2766-2779

Lancet Neurology 6, 562-570

Journal of Neurology 254, 1278-1280

Experimental Cell Research 313, 2077-2087 [review] [full text]

Glia 55, 617-31

Journal of Human Genetics 52, 362-9

Neurology 68, 1322-3

2006

prepared by Albee Messing
Neuropediatrics 37:v1112 (abstract)

Journal of Neuroscience 26, 11162-11173 [link to full article]

Journal of Child Neurology 21, 1075-80
[Provides additional clinical information on E207K patient initially reported in Van der Knaap, et al, 2005]

Journal of Biological Chemistry 281, 38634-38643 [link to full article]

American Journal of Neuroradiology 27, 2088-2092

Brain & Development 28, 663-667
[age of onset for this patient would be considered "infantile" according to our classification]

Journal of Korean Medical Science 21, 954-957

Neuroscience Letters 407, 127-130

Pediatric Neurology 35, 293-296

prepared by Albee Messing

2005

prepared by Albee Messing

2004

prepared by Albee Messing

2003

prepared by Albee Messing
[German]
Monatsschrift fur Kinderheilkunde 151, 311-314

Brain & Development 25, 116-121

Pediatric Radiology 33, 47-49
[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

Lancet Neurology 2, 75

Annals of Neurology 53, 118-120

2002

Brain & Development 24, 723-726
[Genetic studies reported as patient #4 in Shiroma et al., 2003]

Annals of Neurology 52, 779-785

Journal of Neurogenetics 16, 175-179

[see Sawaishi et al., 1999, for more clinical detail on this patient]

2001

prepared by Albee Messing
Neuroscience Letters 312, 71-74

2000

prepared by Albee Messing

1999

1998

1997

1996

1995

1994

1993

prepared by Albee Messing
American Journal of Pathology 143, 487-495

Journal of Child Neurology 8, 134-144

Developmental Medicine & Child Neurology 35, 732-736

1992

Pediatric Neurosurgery 18, 134-138
[see Messing et al., 2011, for genetics]

Neurology 42, 1733-1735

Journal of Child Neurology 7, 168-171

Iwaki A, Iwaki T, Goldman JE, Ogomori K, Tateishi J, Sakaki Y. (1992). *Accumulation of alpha B-crystallin in brains of patients with Alexander's disease is not due to an abnormality of the 5'-flanking and coding sequence of the genomic DNA.*
Neuroscience Letters 140, 89-92

Patologia Polska 43, 193-195

Acta Neuropathologica 84, 322-327

1991

prepared by Albee Messing

(Included two Alexander disease patients)

1990

prepared by Albee Messing
Journal of Histochemistry and Cytochemistry 38, 103-109

1989

1988

Journal of Pathology 155, 9-15

Neurology 38, 152-154

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier.
Journal of the American Veterinary Medical Association 190, 1004-1006

Rinsho Shinkeigaku - Clinical Neurology 27, 1141-1144

1986

Acta Neuropathologica 71, 163-166

1985

Brain 108, 367-385

Acta Neuropathologica 67, 163-166

1984

Annals of Neurology 15, 605-607

1983

1982

1981

1980

1979

1977

prepared by Albee Messing
1976

1974

1973

1972

1970

1968

1967

1966

1964

1962

1959

prepared by Albee Messing
1953

1952

Stevenson LD, Vogel FS. (1952). A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord. *Ciencia (México)* 12, 71-74

1949

[First description of a child with Alexander disease]

1898