Alexander Disease Research Bibliography (updated September 16, 2018)

Recently added:

2018

prepared by Albee Messing

Boczek NJ, Sigafoos AN, Zimmermann MT, Maus RL, Cousin MA, Blackburn PR, Urrutia R, Clark KJ, Patterson MC, Wick MJ, Klee EW. (2016). Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic. *Clinical Case Reports*. 4, 885-895 [there is much misinformation here, but it is an interesting case report of an uncommon variant]

2016

Elmali AD, Çetinçelik Ü, Islak C, Adatepe NU, Savrun FK, Yalçinkaya C. (2016). Familial adult-onset Alexander disease: clinical and neuroradiological findings of three cases. *Noropsikiyatri Arsivi-Archives of Neuropsychiatry*. 53, 169-172 [note that the mutation is reported incorrectly, and should be M415I]

2015

prepared by Albee Messing

prepared by Albee Messing

2014

prepared by Albee Messing

2013

Hagemann TL, Paylor R, Messing A. (2013). Deficits in adult neurogenesis, contextual fear conditioning and spatial learning in a Gfap mutant mouse model of Alexander disease. *Journal of Neuroscience.* 33, 18698-18706 [describes an entirely new phenotype not previously known to be part of the disease]

Snider NT, Park H, Omary MB. (2013). A conserved rod domain phosphotyrosine that is targeted by the phosphatase PTP1B promotes keratin 8 insolubility and filament organization. *Journal of Biological Chemistry.* 288, 31329-37 (includes comparison of mutant keratin and GFAP)

prepared by Albee Messing

Melchionda L, Fang M, Wang H, Fugnanesi V, Morbin M, Liu X, Li W, Ceccherini I, Farina L, Savoiardo M, P DA, Zhang J, Costa A, Ravaglia S, Ghezzi D, Zeviani M. (2013). Adult-onset Alexander disease, associated with a mutation in an alternative GFAP transcript, may be phenotypically modulated by a non-neutral HDAC6 variant. Orphanet Journal of Rare Diseases. 8, 66 [raises the possibility of a pathogenic mutation in the GFAP-delta form of GFAP (a minor variant) and also germline mosaicism in the mother – however, the evidence for both of these claims is weak]

Jany, P.L., Hagemann, T.L., and Messing, A. GFAP expression as an indicator of disease severity in mouse models of Alexander disease. ASN Neuro 5:art:e00109.doi:10.1042/AN20130003 [link to full article and podcast]

prepared by Albee Messing

2012

LaPash Daniels CM, Austin EV, Rockney DE, Jacka EM, Hagemann TL, Johnson DA, Johnson JA, Messing A. (2012) **Beneficial effects of Nrf2 overexpression in a mouse model of Alexander disease.** *Journal of Neuroscience* 32, 10507-10515 [link to full article]

2011

Chen YS, Lim SC, Chen MH, Quinlan RA, Perng MD. (2011). Alexander disease causing mutations in the C-terminal domain of GFAP are deleterious both to assembly and network formation with the potential to both activate caspase 3 and decrease cell viability. *Experimental Cell Research* 317, 2252-66

2010

prepared by Albee Messing

2009

prepared by Albee Messing

Liem RKH and Messing A. (2009). Dysfunctions of neuronal and glial intermediate filaments in disease. *Journal of Clinical Investigation* 119, 1814-1824 [contains review of GFAP in blood or CSF as a potential biomarker for various diseases] [link to full article]

2008

2007

prepared by Albee Messing

2006

[TProvides additional clinical information on E207K patient initially reported in Van der Knaap, et al, 2005]

[age of onset for this patient would be considered "infantile" according to our classification]

prepared by Albee Messing
2005

2004

prepared by Albee Messing

2003

[same patients for whom clinical/genetic data reported in Meins et al., 2002]

[Appears to be same as patient #10 in Gorospe, et al., 2002 - there is considerable misinformation in the literature review]

2002

[Genetic studies reported as patient #4 in Shiroma et al., 2003]

prepared by Albee Messing

2001

prepared by Albee Messing

2000

1999

prepared by Albee Messing

Herndon RM. (1999). **Is Alexander's disease a nosologic entity or a common pathologic pattern of diverse etiology?** *Journal of Child Neurology* 14, 275-276

1998

prepared by Albee Messing
1997

1996

1995

1994

prepared by Albee Messing

1993

1992

prepared by Albee Messing

1991

prepared by Albee Messing
1990

1989

1988

1987

Sorjonen DC, Cox NR, Kwapien RP. (1987). Myeloencephalopathy with eosinophilic refractile bodies (Rosenthal fibers) in a Scottish terrier. Journal of the American Veterinary Medical Association 190, 1004-1006

1986

1985

1984

1983

1982

1981

prepared by Albee Messing

1980

1979

1977

prepared by Albee Messing

1976

1974

1973

1972

1970

1968

1967

1966

1964

1962

1959

1953

1952
Stevenson LD, Vogel FS. (1952). *A case of macrocephaly associated with feeble-mindedness and encephalopathy with peculiar deposits throughout the brain and spinal cord*. *Ciencia (Méx.)* 12, 71-74

1949

Alexander WS. (1949). *Progressive fibrinoid degeneration of fibrillary astrocytes associated with mental retardation in a hydrocephalic infant*. *Brain* 72, 373-381
[First description of a child with Alexander disease]

1898